Web Communities : Analysis and Construction

本文介绍了一种基于Web文档内容、超链接及用户访问记录来构建和分析Web社区的方法。通过结合Web搜索算法、聚类技术和使用模式挖掘,该方法能够有效支持信息检索并实现多种应用。文中还详细介绍了所需的基本算法及成功案例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

版权声明:原创作品,允许转载,转载时请务必以超链接形式标明文章原始出版、作者信息和本声明。否则将追究法律责任。 http://blog.youkuaiyun.com/topmvp - topmvp
Due to the lack of a uniform schema for Web documents and the sheer amount and dynamics of Web data, both the effectiveness and the efficiency of information management and retrieval of Web data is often unsatisfactory when using conventional data management techniques. Web community, defined as a set of Web-based documents with its own logical structure, is a flexible and efficient approach to support information retrieval and to implement various applications. Zhang and his co-authors explain how to construct and analyse Web communities based on information like Web document contents, hyperlinks, or user access logs. Their approaches combine results from Web search algorithms, Web clustering methods, and Web usage mining. They also detail the necessary preliminaries needed to understand the algorithms presented, and they discuss several successful existing applications. Researchers and students in information retrieval and Web search find in this all the necessary basics and methods to create and understand Web communities. Professionals developing Web applications will additionally benefit from the samples presented for their own designs and implementations.
http://rapidshare.com/files/51145777/3540277374.rar
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值