布隆过滤器详解

布隆过滤器是一种用于判断元素是否存在于集合中的概率型数据结构,通过多个哈希函数将元素映射到位数组上。它具有空间效率高、插入和查询速度快的特点,但存在误判可能。适用于数据库防穿库、URL去重、缓存穿透场景等。Guava库提供了布隆过滤器的实现,而在删除和精确性方面,布谷鸟过滤器提供了一种改进方案。

什么是布隆过滤器

布隆过滤器(Bloom Filter)是 1970 年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。主要用于判断一个元素是否在一个集合中。

通常我们会遇到很多要判断一个元素是否在某个集合中的业务场景,一般想到的是将集合中所有元素保存起来,然后通过比较确定。链表、树、散列表(又叫哈希表,Hash table)等等数据结构都是这种思路。但是随着集合中元素的增加,我们需要的存储空间也会呈现线性增长,最终达到瓶颈。同时检索速度也越来越慢,上述三种结构的检索时间复杂度分别为 O ( n ) O(n) O(n) O ( l o g n ) O(logn) O(logn) O ( 1 ) O(1) O(1)

这个时候,布隆过滤器(Bloom Filter)就应运而生。

布隆过滤器原理

布隆过滤器是由一个固定大小的二进制向量或者位图(bitmap)和一系列映射函数组成的。在初始状态时,对于长度为 m 的位数组,它的所有位都被置为0,如下图所示:
在这里插入图片描述
当有变量被加入集合时,通过 K 个映射函数将这个变量映射成位图中的 K 个点,把它们置为 1。
在这里插入图片描述
查询某个变量的时候我们只要看看这些点是不是都是 1 就可以大概率知道集合中有没有它了

  • 如果这些点有任何一个 0,则被查询变量一定不在;
  • 如果都是 1,则被查询变量很可能存在。为什么说是可能存在,而不是一定存在呢?那是因为映射函数本身就是散列函数,散列函数是会有碰撞的。

误判率:布隆过滤器的误判是指多个输入经过哈希之后在相同的bit位置1了,这样就无法判断究竟是哪个输入产生的,因此误判的根源在于相同的 bit 位被多次映射且置 1。这种情况也造成了布隆过滤器的删除问题,因为布隆过滤器的每一个 bit 并不是独占的,很有可能多个元素共享了某一位。如果我们直接删除这一位的话,会影响其他的元素。

特性

  • 一个元素如果判断结果为存在的时候元素不一定存在,但是判断结果为不存在的时候则一定不存在。
  • 布隆过滤器可以添加元素,但是不能删除元素。因为删掉元素会导致误判率增加。

添加元素步骤

  • 将要添加的元素给 k 个哈希函数
  • 得到对应于位数组上的 k 个位置
  • 将这k个位置设为 1

查询元素步骤

  • 将要查询的元素给k个哈希函数
  • 得到对应于位数组上的k个位置
  • 如果k个位置有一个为 0,则肯定不在集合中
  • 如果k个位置全部为 1,则可能在集合中‘

优点:相比于其它的数据结构,布隆过滤器在空间和时间方面都有巨大的优势。布隆过滤器存储空间和插入/查询时间都是常数 O ( K ) O(K) O(K),另外,散列函数相互之间没有关系,方便由硬件并行实现。布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势。且布隆过滤器可以表示全集,其它任何数据结构都不能;

缺点:布隆过滤器的缺点和优点一样明显。误算率是其中之一。随着存入的元素数量增加,误算率随之增加。但是如果元素数量太少,则使用散列表足矣。另外,一般情况下不能从布隆过滤器中删除元素。我们很容易想到把位数组变成整数数组,每插入一个元素相应的计数器加 1, 这样删除元素时将计数器减掉就可以了。然而要保证安全地删除元素并非如此简单。首先我们必须保证删除的元素的确在布隆过滤器里面。这一点单凭这个过滤器是无法保证的。另外计数器回绕也会造成问题。在降低误算率方面,有不少工作,使得出现了很多布隆过滤器的变种。

布隆过滤器使用场景

在程序的世界中,布隆过滤器是程序员的一把利器,利用它可以快速地解决项目中一些比较棘手的问题。

如网页 URL 去重、垃圾邮件识别、大集合中重复元素的判断和缓存穿透等问题。

布隆过滤器的典型应用有:

  • 数据库防止穿库。 Google Bigtable,HBase 和 Cassandra 以及 Postgresql 使用BloomFilter来减少不存在的行或列的磁盘查找。避免代价高昂的磁盘查找会大大提高数据库查询操作的性能。
  • 业务场景中判断用户是否阅读过某视频或文章,比如抖音或头条,当然会导致一定的误判,但不会让用户看到重复的内容。
  • 缓存宕机、缓存击穿场景,一般判断用户是否在缓存中,如果在则直接返回结果,不在则查询db,如果来一波冷数据,会导致缓存大量击穿,造成雪崩效应,这时候可以用布隆过滤器当缓存的索引,只有在布隆过滤器中,才去查询缓存,如果没查询到,则穿透到db。如果不在布隆器中,则直接返回。
  • WEB拦截器,如果相同请求则拦截,防止重复被攻击。用户第一次请求,将请求参数放入布隆过滤器中,当第二次请求时,先判断请求参数是否被布隆过滤器命中。可以提高缓存命中率。Squid 网页代理缓存服务器在 cache digests 中就使用了布隆过滤器。Google Chrome浏览器使用了布隆过滤器加速安全浏览服务。
  • Venti 文档存储系统也采用布隆过滤器来检测先前存储的数据。
  • SPIN 模型检测器也使用布隆过滤器在大规模验证问题时跟踪可达状态空间。

布隆过滤器的使用

google的Guava工具类已经做好了封装,可以直接使用:

<dependency>
    <groupId>com.google.guava</groupId>
    <artifactId>guava</artifactId>
    <version>23.0</version>
</dependency>

代码如下:

package com.eyes.base.test;

import com.google.common.hash
评论 3
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值