大模型应用开发实战

大模型数据助手

🌟 项目简介

已适配DeepSeek Qwen2.5等大模型

一个轻量级、支持全链路且易于二次开发的大模型应用项目

基于 Dify 、Ollama&Vllm、Sanic 和 Text2SQL 📊 等技术构建的一站式大模型应用开发项目,采用 Vue3、TypeScript 和 Vite 5 打造现代UI。它支持通过 ECharts 📈 实现基于大模型的数据图形化问答,具备处理 CSV 文件 📂 表格问答的能力。同时,能方便对接第三方开源 RAG 系统 检索系统 🌐等,以支持广泛的通用知识问答。

作为轻量级的大模型应用开发项目,Sanic-Web 🛠️ 支持快速迭代与扩展,助力大模型项目快速落地。🚀

项目地址: https://github.com/apconw/sanic-web.git

具体安装部署流程访问项目地址

架构方案

在这里插入图片描述

🎉 特性

  • 核心技术栈:Dify + Ollama + RAG + LLM + Text2SQL
  • UI 框架:Vue 3 + TypeScript + Vite 5
  • 数据问答:集成 ECharts大模型实现Text2SQL轻量级的图形化数据问答展示
  • 表格问答:支持 CSV格式文件的上传与基于大模型总结预处理和Text2SQL的表格数据问答
  • 通用问答:支持通用数据形式问答基于对接三方RAG系统+公网检索模式
  • 应用架构:作为一个轻量级全链路一站式大模型应用开发框架方便扩展落地
  • 灵活部署:支持大模型应用开发各依赖组件docker-compose一键拉起快速部署零配置

运行效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

QA微信交流群

请添加图片描述

AI大模型应用开发实战是指在实际项目中应用和开发人工智能大模型的过程。在开展这项工作时,我们需要遵循一系列步骤和准则,确保应用的高效性和可行性。 首先,我们需要明确项目目标和需求。在制定开发计划之前,我们必须清楚了解项目的具体目标和需求,例如是要开发一个智能客服系统,还是进行图像识别或自然语言处理等任务。 接下来,我们需要收集和准备数据。数据是训练大模型不可或缺的要素,因此我们需要选择合适的数据集,并进行数据预处理,包括数据清洗、标注和分割等工作。同时,为了保护数据的隐私和安全性,我们也需要采取相应的措施。 然后,我们需要选择合适的大模型和算法。根据项目需求,我们可以选择现有的大模型,如OpenAI的GPT系列或Google的BERT模型,也可以根据需求进行定制化开发。在选择算法时,我们需要考虑模型的准确性、效率和可扩展性等方面。 接着,我们进行模型训练和优化。这一步骤包括设置训练参数、利用数据进行模型训练和验证,以及对模型进行调优和优化,以提高其准确性和性能。 最后,我们进行应用部署和测试。在将模型应用到实际场景之前,我们需要进行系统集成、性能测试和安全验证等步骤。一旦通过测试,我们就可以将应用部署到服务器、云平台或移动设备上,供用户使用。 总结来说,AI大模型应用开发实战需要我们明确目标和需求、准备数据、选择模型和算法、进行训练和优化,最后进行部署和测试。通过这些步骤,我们能够开发出高效、可靠的人工智能大模型应用,为用户提供优质的服务。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值