Spark函数讲解:collectAsMap

/**
 * User: 过往记忆
 * Date: 15-03-16
 * Time: 上午09:24
 * bolg: http://www.iteblog.com
 * 本文地址:http://www.iteblog.com/archives/1289
 * 过往记忆博客,专注于hadoop、hive、spark、shark、flume的技术博客,大量的干货
 * 过往记忆博客微信公共帐号:iteblog_hadoop
 */
scala> val data = sc.parallelize(List((1, "www"), (1, "iteblog"), (1, "com"), 
    (2, "bbs"), (2, "iteblog"), (2, "com"), (3, "good")))
data: org.apache.spark.rdd.RDD[(Int, String)] =
    ParallelCollectionRDD[26] at parallelize at <console>:12
 
scala> data.collectAsMap
res28: scala.collection.Map[Int,String] = Map(2 -> com, 1 -> com, 3 -> good)


从结果我们可以看出,如果RDD中同一个Key中存在多个Value,那么后面的Value将会把前面的Value覆盖,最终得到的结果就是Key唯一,而且对应一个Value。


本文转载自:http://www.iteblog.com/archives/1289

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值