% prophet Mohammed said [ALLAH will help any one helped his/her brother/sister] PBUH
%This code to apply LDA (Linear Discriminant Analysis)
% for any information please send to engalaatharwat@hotmail.com
%Egypt - HICIT - +20106091638
% This example deals with 2 classes
c1=[1 2;2 3;3 3;4 5;5 5] % the first class 5 observations
c2=[1 0;2 1;3 1;3 2;5 3;6 5] % the second class 6 observations
scatter(c1(:,1),c1(:,2),6,'r'),hold on;
scatter(c2(:,1),c2(:,2),6,'b');
% Number of observations of each class
n1=size(c1,1)
n2=size(c2,1)
%Mean of each class
mu1=mean(c1)
mu2=mean(c2)
% Average of the mean of all classes
mu=(mu1+mu2)/2
% Center the data (data-mean)
d1=c1-repmat(mu1,size(c1,1),1)
d2=c2-repmat(mu2,size(c2,1),1)
% Calculate the within class variance (SW)
s1=d1'*d1
s2=d2'*d2
sw=s1+s2
invsw=inv(sw)
% in case of two classes only use v
% v=invsw*(mu1-mu2)'
% if more than 2 classes calculate between class variance (SB)
sb1=n1*(mu1-mu)'*(mu1-mu)
sb2=n2*(mu2-mu)'*(mu2-mu)
SB=sb1+sb2
v=invsw*SB
% find eigne values and eigen vectors of the (v)
[evec,eval]=eig(v)
% Sort eigen vectors according to eigen values (descending order) and
% neglect eigen vectors according to small eigen values
% v=evec(greater eigen value)
% or use all the eigen vectors
% project the data of the first and second class respectively
y2=c2*v
y1=c1*v
运行结果:
c1 =1 2
2 3
3 3
4 5
5 5
c2 =
1 0
2 1
3 1
3 2
5 3
6 5
n1 =
5
n2 =
6
mu1 =
3.0000 3.6000
mu2 =
3.3333 2.0000
mu =
3.1667 2.8000
d1 =
-2.0000 -1.6000
-1.0000 -0.6000
0 -0.6000
1.0000 1.4000
2.0000 1.4000
d2 =
-2.3333 -2.0000
-1.3333 -1.0000
-0.3333 -1.0000
-0.3333 0
1.6667 1.0000
2.6667 3.0000
s1 =
10.0000 8.0000
8.0000 7.2000
s2 =
17.3333 16.0000
16.0000 16.0000
sw =
27.3333 24.0000
24.0000 23.2000
invsw =
0.3991 -0.4128
-0.4128 0.4702
sb1 =
0.1389 -0.6667
-0.6667 3.2000
sb2 =
0.1667 -0.8000
-0.8000 3.8400
SB =
0.3056 -1.4667
-1.4667 7.0400
v =
0.7274 -3.4917
-0.8157 3.9156
evec =
-0.9790 0.6656
-0.2040 -0.7463
eval =
0 0
0 4.6430
y2 =
0.7274 -3.4917
0.6391 -3.0679
1.3666 -6.5596
0.5508 -2.6440
1.1900 -5.7119
0.2859 -1.3725
y1 =
-0.9041 4.3394
-0.9924 4.7633
-0.2649 1.2716
-1.1690 5.6110
-0.4415 2.1193
我的理解:
将特征值降序排列,对应的特征向量为:
w1:evec(:,2)
w2:evec(:,1)
z1=c1*evec
z2=c2*evec
z1 =
-1.3869 -0.8271
-2.5698 -0.9079
-3.5488 -0.2424
-4.9357 -1.0695
-5.9147 -0.4040
z2 =
-0.9790 0.6656
-2.1619 0.5848
-3.1409 1.2503
-3.3448 0.5040
-5.5068 1.0887
-6.8937 0.2616
c1*w1>c1*w2,c1属于类别1
c2*w2>c2*w1,c2属于类别2