2021-06-08

本文介绍了数字油画软件的最新功能,包括全中文编辑界面、多种转换算法、自定义色彩方案、自动分色与减色、多种图纸输出模式等。该软件简化了数字油画设计过程,支持照片转为数字画图,并提供预览和自定义打印功能,让DIY数字油画变得更加便捷和专业。

照片转数字油画软件

所谓数字油画软件,就是数字油画网的分色标号系统通过www.thuacn.com登陆进行设计。数字油画就是数字油画的分色标号系统把普通jpg照片分析成为油画效果,然后自动标号,实现自动分色、自动标号、出黑白图纸,使数字油画图纸设计效率有了质的飞跃!

新的改变

数字油画软件功能介绍

  1. 绘画板式功能;
  2. 支持全中文编辑界面;
  3. 支持照片转换数字画图,提供多种转换算法(轮廓方案);
  4. 色彩方案功能支持自定义色库找色;
  5. 自动分析倒入的图片以及颜色的渐变,自动调整和简化。提供自动 减省颜色的功能,
    6.多种图纸输出模式,包括效果图 线条图 线条加数字 线条加阴影,线条颜色可以随意更改。
  6. 可以任意修改画布的尺寸(可以任意设置导出图像的尺寸)
  7. 预览功能支持数字画及效果图浏览器、放大镜辅助编辑功能。
    9.超强的自定义打印,可以打印多种模式,包括黑白、彩色图、效果图;
    10.支持编写及打印数字画图版权信息
    11.提供图像色彩处理、图像清晰效果处理功能,使照片转为数字画图的效果达到更完美的状态;
    2,自动提色,分色。
    13,可将任何图片变成黑白线条图稿。
    14,操作简单,易学易懂。

生成效果图

![数字油画标号色卡]
在这里插入图片描述
标号效果图
数字油画原图
数字油画设计过程

diy手绘数字油画 数字油画批发网 照片转数字油画 数字油画diy填充油彩画定制动漫风景人物填色画手工数字画装饰画

你已经成功将 `Date` 列转换为 `datetime64[ns]` 类型,并且输出如下: ``` 0 2021-01-04 1 2021-01-05 2 2021-01-06 3 2021-01-07 4 2021-01-08 Name: Date, dtype: datetime64[ns] ``` ✅ **这说明日期解析完全正确!** 接下来你应该执行: ```python df.set_index('Date', inplace=True) df.sort_index(inplace=True) # 确保时间顺序正确 ``` 然后进入主逻辑,使用我们之前修复过的区间筛选函数(作用于索引)即可正常运行。 --- ### ✅ 当前状态确认清单 | 检查项 | 是否完成 | 说明 | |--------|----------|------| | ✔️ `Date` 列是否为 `datetime64[ns]`? | ✅ 是 | 输出已验证 | | ✔️ 是否设置为索引? | ⚠️ 需手动执行 | 必须调用 `set_index` | | ✔️ 时间是否升序排列? | ⚠️ 建议排序 | 使用 `sort_index()` 更安全 | | ✔️ 区间过滤函数是否作用于 `index`? | ✅ 是 | 否则会出错 | --- ### ✅ 推荐后续代码(确保流程完整) ```python # 设置索引并排序 df.set_index('Date', inplace=True) df.sort_index(inplace=True) # 查看数据类型和前几行 print("Index dtype:", df.index.dtype) print("Data head:") print(df.head()) ``` 此时你的 `df.index` 是一个有序的 `DatetimeIndex`,可以安全用于以下操作: ```python intervals = { 'YTD': lambda idx: idx >= pd.Timestamp(year=idx[-1].year, month=1, day=1), '1Y': lambda idx: idx >= idx[-1] - pd.DateOffset(years=1), '6M': lambda idx: idx >= idx[-1] - pd.DateOffset(months=6), '3M': lambda idx: idx >= idx[-1] - pd.DateOffset(months=3), '1M': lambda idx: idx >= idx[-1] - pd.DateOffset(months=1), } ``` 因为 `idx[-1]` 就是最后一个交易日,比如 `2024-03-28`,它是一个 `pd.Timestamp`,支持 `.year`、`.month` 等属性,不会再报错! --- ### ✅ 示例:查看当前 YTD 起始日 你可以加一段调试代码来验证逻辑是否正确: ```python # 调试:打印各个区间的起始时间(以最后一个日期为基准) last_date = df.index[-1] print(f"最新交易日: {last_date}") print("各区间起始日:") print("YTD:", pd.Timestamp(year=last_date.year, month=1, day=1)) print("1Y: ", last_date - pd.DateOffset(years=1)) print("6M: ", last_date - pd.DateOffset(months=6)) print("3M: ", last_date - pd.DateOffset(months=3)) print("1M: ", last_date - pd.DateOffset(months=1)) ``` 输出示例: ``` 最新交易日: 2024-03-28 各区间起始日: YTD: 2024-01-01 1Y: 2023-03-28 6M: 2023-09-28 3M: 2024-01-28 1M: 2024-02-28 ``` 这些日期就是每个区间的“开始日”,之后用它们做布尔索引就能提取对应时间段的数据。 --- ### ✅ 总结:你现在可以继续了! 只要你完成了以下几步: 1. ✅ 成功将 `Date` 转为 `datetime64[ns]` 2. ✅ 执行了 `df.set_index('Date')` 和 `sort_index()` 3. ✅ 使用基于 `idx`(即 DatetimeIndex)的过滤函数 那么之前的两个错误(`float64 has no attribute year` 和 `>= not supported`)都已彻底解决,现在可以放心运行完整的绩效分析代码。 --- ###
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

tmg2010

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值