【BZOJ4695】最假女选手 jls线段树

传送⻔

题意

在这里插入图片描述

分析

首先考虑如果将单调修改转化为区间修改 在进行操作二的时候,如果区间内的最小值小于 x x x,区间内的严格次小值大于等于 x x x,那么我们可以去对这个区间进行整体修改 所以,我们需要在线段树中维护区间最大值,最大值出现的次数,最小值,最小值出现的次数,并且维护区间和和懒标记

代码

#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define debug(x) cout<<#x<<":"<<x<<endl; #define dl(x) printf("%lld\n",x);
#define di(x) printf("%d\n",x);
#define _CRT_SECURE_NO_WARNINGS #define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef vector<int> VI;
const int INF = 0x3f3f3f3f;
const int N = 1e6 + 10;
const ll mod = 1000000007;
const double eps = 1e-9;
const double PI = acos(-1); template<typename T>inline void read(T &a) {
char c = getchar(); T x = 0, f = 1; while (!isdigit(c)) {if (c == '-')f = -1; c = getchar();}
while (isdigit(c)) {x = (x << 1) + (x << 3) + c - '0'; c = getchar();} a = f * x; }
int gcd(int a, int b) {return (b > 0) ? gcd(b, a % b) : a;} int a[N];
int n;
struct Node{
int l,r;
int mx,mi,sx,si; int xcnt,icnt;
ll sum;
int add;
}tr[N * 4];
void push(int u){
tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum; if(tr[u << 1].mx == tr[u << 1 | 1].mx){
tr[u].mx = tr[u << 1].mx;
tr[u].xcnt = tr[u << 1].xcnt + tr[u << 1 | 1].xcnt; tr[u].sx = max(tr[u << 1].sx,tr[u << 1 | 1].sx);
}
if(tr[u << 1].mi == tr[u << 1 | 1].mi){
tr[u].mi = tr[u << 1].mi;
tr[u].icnt = tr[u << 1].icnt + tr[u << 1 | 1].icnt; tr[u].si = min(tr[u << 1].si,tr[u << 1 | 1].si);
}
if(tr[u << 1].mx > tr[u << 1 | 1].mx){
tr[u].mx = tr[u << 1].mx;
tr[u].xcnt = tr[u << 1].xcnt;
tr[u].sx = max(tr[u << 1].sx,tr[u << 1 | 1].mx);
}
if(tr[u << 1].mx < tr[u << 1 | 1].mx){
tr[u].mx = tr[u << 1 | 1].mx;
 tr[u].xcnt = tr[u << 1 | 1].xcnt;
tr[u].sx = max(tr[u << 1].mx,tr[u << 1 | 1].sx); }
if(tr[u << 1].mi < tr[u << 1 | 1].mi){
tr[u].mi = tr[u << 1].mi;
tr[u].icnt = tr[u << 1].icnt;
tr[u].si = min(tr[u << 1].si,tr[u << 1 | 1].mi);
}
if(tr[u << 1].mi > tr[u << 1 | 1].mi){
tr[u].mi = tr[u << 1 | 1].mi;
tr[u].icnt = tr[u << 1 | 1].icnt;
tr[u].si = min(tr[u << 1].mi,tr[u << 1 | 1].si);
} }
void down(int u){ if(tr[u].add){
int &k = tr[u].add;
tr[u << 1].mi += k,tr[u << 1].mx += k,tr[u << 1].si += k,tr[u << 1].sx += k,tr[u << 1].sum += 1ll * (tr[u << 1].r - tr[u << 1].l + 1) * k,tr[u << 1].add += k;
tr[u << 1 | 1].mi += k,tr[u << 1 | 1].mx += k,tr[u << 1 | 1].si += k,tr[u << 1 | 1].sx += k,tr[u << 1 | 1].sum += 1ll * (tr[u << 1 | 1].r - tr[u << 1 | 1].l + 1) * k,tr[u << 1 | 1].add += k;
k = 0; }
if(tr[u << 1].mx > tr[u].mx){
if(tr[u << 1].mx == tr[u << 1].mi) tr[u << 1].mi = tr[u].mx;
if(tr[u << 1].si == tr[u << 1].mx) tr[u << 1].si = tr[u].mx;
tr[u << 1].sum += 1ll * tr[u << 1].xcnt * (tr[u].mx - tr[u << 1].mx); tr[u << 1].mx = tr[u].mx;
}
if(tr[u << 1 | 1].mx > tr[u].mx){
if(tr[u << 1 | 1].mx == tr[u << 1 | 1].mi) tr[u << 1 | 1].mi = tr[u].mx;
if(tr[u << 1 | 1].si == tr[u << 1 | 1].mx) tr[u << 1 | 1].si = tr[u].mx;
tr[u << 1 | 1].sum += 1ll * tr[u << 1 | 1].xcnt * (tr[u].mx - tr[u << 1 | 1].mx); tr[u << 1 | 1].mx = tr[u].mx;
}
if(tr[u << 1].mi < tr[u].mi){
if(tr[u << 1].mx == tr[u << 1].mi) tr[u << 1].mx = tr[u].mi;
if(tr[u << 1].sx == tr[u << 1].mi) tr[u << 1].sx = tr[u].mi;
tr[u << 1].sum += 1ll * tr[u << 1].icnt * (tr[u].mi - tr[u << 1].mi); tr[u << 1].mi = tr[u].mi;
}
if(tr[u << 1 | 1].mi < tr[u].mi){
if(tr[u << 1 | 1].mx == tr[u << 1 | 1].mi) tr[u << 1 | 1].mx = tr[u].mi;
if(tr[u << 1 | 1].sx == tr[u << 1 | 1].mi) tr[u << 1 | 1].sx = tr[u].mi;
tr[u << 1 | 1].sum += 1ll * tr[u << 1 | 1].icnt * (tr[u].mi - tr[u << 1 | 1].mi); tr[u << 1 | 1].mi = tr[u].mi;
} }
void build(int u,int l,int r){ tr[u] = {l,r};
if(l == r){
tr[u].mx = tr[u].mi = a[l]; tr[u].xcnt = tr[u].icnt = 1; tr[u].sx = -INF,tr[u].si = INF; tr[u].sum = a[l];
return;
}
int mid = (l + r) >> 1;
build(u << 1,l,mid),build(u << 1 | 1,mid + 1,r); push(u);
}
void m_add(int u,int l,int r,int k){ if(tr[u].l >= l && tr[u].r <= r){
tr[u].mx += k,tr[u].sx += k,tr[u].mi += k,tr[u].si += k,tr[u].sum += 1ll * (tr[u].r - tr[u].l + 1) * k; tr[u].add += k;
return;
} down(u);

 int mid = (tr[u].l + tr[u].r) >> 1;
if(l <= mid) m_add(u << 1,l,r,k); if(r > mid) m_add(u << 1 | 1,l,r,k); push(u);
}
void m_max(int u,int l,int r,int k){
if(tr[u].mi >= k) return;
if(tr[u].l >= l && tr[u].r <= r && tr[u].si >= k){
if(tr[u].mi == tr[u].mx) tr[u].mx = k; if(tr[u].mi == tr[u].sx) tr[u].sx = k; tr[u].sum += 1ll * (k - tr[u].mi) * tr[u].icnt; tr[u].mi = k;
return; }
down(u);
int mid = (tr[u].l + tr[u].r) >> 1;
if(l <= mid) m_max(u << 1,l,r,k); if(r > mid) m_max(u << 1 | 1,l,r,k); push(u);
}
void m_min(int u,int l,int r,int k){
if(tr[u].mx <= k) return;
if(tr[u].l >= l && tr[u].r <= r && tr[u].sx <= k){
if(tr[u].mx == tr[u].mi) tr[u].mi = k; if(tr[u].mx == tr[u].si) tr[u].si = k; tr[u].sum += 1ll * (k - tr[u].mx) * tr[u].xcnt; tr[u].mx = k;
return; }
down(u);
int mid = (tr[u].l + tr[u].r) >> 1;
if(l <= mid) m_min(u << 1,l,r,k); if(r > mid) m_min(u << 1 | 1,l,r,k); push(u);
}
ll query_sum(int u,int l,int r){
if(tr[u].l >= l && tr[u].r <= r) return tr[u].sum; down(u);
int mid = (tr[u].l + tr[u].r) >> 1;
ll res = 0;
if(l <= mid) res = query_sum(u << 1,l,r);
if(r > mid) res += query_sum(u << 1 | 1,l,r); return res;
}
int query_min(int u,int l,int r){
if(tr[u].l >= l && tr[u].r <= r) return tr[u].mi; down(u);
int mid = (tr[u].l + tr[u].r) >> 1;
int res = INF;
if(l <= mid) res = query_min(u << 1,l,r);
if(r > mid) res = min(res,query_min(u << 1 | 1,l,r)); return res;
}
int query_max(int u,int l,int r){
if(tr[u].l >= l && tr[u].r <= r) return tr[u].mi;
down(u);
int mid = (tr[u].l + tr[u].r) >> 1;
int res = -INF;
if(l <= mid) res = query_max(u << 1,l,r);
if(r > mid) res = max(res,query_max(u << 1 | 1,l,r)); return res;
}
int main() { read(n);
for(int i = 1;i <= n;i++) read(a[i]);

build(1,1,n); int m; read(m); while(m--){
int op,x,y,z;
read(op),read(x),read(y);
if(op == 1) read(z),m_add(1,x,y,z);
if(op == 2) read(z),m_max(1,x,y,z);
if(op == 3) read(z),m_min(1,x,y,z);
if(op == 4) printf("%lld\n",query_sum(1,x,y)); if(op == 5) printf("%d\n",query_max(1,x,y)); if(op == 6) printf("%d\n",query_min(1,x,y));
}
return 0; }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值