威尔逊定理:
(p-1)!≡\equiv≡-1(mod p)当且仅当p为素数时成立;
当3n+7为素数时,(3n+6)!+1可记为m*(3n+7),⌈(3n+6)!3n+7 ⌉\lceil \frac{(3n+6)!}{3n+7}\ \rceil⌈3n+7(3n+6)! ⌉的结果为m-1;此时SnS_{n}Sn=Sn−1S_{n-1}Sn−1+1;
当3n+7不是素数时,⌈(3n+6)!+13n+7 ⌉\lceil \frac{(3n+6)!+1}{3n+7}\ \rceil⌈3n+7(3n+6)!+1 ⌉和⌈(3n+6)!3n+7 ⌉\lceil \frac{(3n+6)!}{3n+7}\ \rceil⌈3n+7(3n+6)! ⌉结果相同,此时SnS_{n}Sn=Sn−1S_{n-1}Sn−1;
然后筛法求个3e6+7的素数就行了。查询次数较多,可以考虑预处理一下。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#define ll long long
using namespace std;
const int maxn = 3e6+50;
const int N = 1e6+10;
const double EXP = 1e-6;
int T,n;
int prime[maxn],ans[N];
bool vis[maxn];
int cnt;//璁板綍绱犳暟涓暟
void Prime(){
memset(vis,false,sizeof(vis));
memset(prime,0,sizeof(prime));
for(int i=2;i<=maxn;i++){
if(!vis[i]){
prime[++cnt]=i;
}
for(int j=1;j<=cnt&&i*prime[j]<=maxn;j++){
vis[i*prime[j]]=true;
if(i%prime[j]==0){
break;
}
}
}
}
void init(){
int ant=1;
ans[0]=0;
for(int i=1;i<N;i++){
int x=3*i+7;
while(prime[ant]<x){
ant++;
}
if(prime[ant]==x)ans[i]=ans[i-1]+1;
else ans[i]=ans[i-1];
}
}
int main(){
scanf("%d",&T);
Prime();
init();
while(T--){
scanf("%d",&n);
printf("%d\n",ans[n]);
}
return 0;
}