The Fundamental Matrix Song

本文深入探讨了立体几何中基础矩阵的概念,该矩阵在3D视觉和计算机视觉中有重要作用。基础矩阵是一个3x3的方阵,拥有7个自由度,秩为2,其在两幅图像中对应点之间的极线约束起到关键作用。文章还提到了基础矩阵的估计方法,包括使用奇异值分解(SVD)从一组样本点中求解,并强调了共面点集的退化性以及估计过程中保持秩约束的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The fundamental matrix 
Used in stereo geometry 
A matrix with nine entries 
It's square with size 3 by 3 
Has seven degrees of freedom 
It has a rank deficiency 
It's only of rank two 
Call the matrix F and you'll see...

Two points that correspond 
Column vectors called x and x-prime 
x-prime transpose times F times x 
Equals zero every time

The epipolar constraint 
Involves epipolar lines 
Postmultiplying F by x 
Results in vector l-prime 
It's the epipolar line 
In the other view passing through x-prime 
A three component vector 
Of homogeneous design

The left and right nullspaces of F 
Are the epipoles e-prime and e 
All of the epipolar lines 
Should pass through these

Here's a linear estimation example: 
Take a set of 8 point samples 
Construct a matrix, take the SVD 
And the elements of F are in the last column of V

If you try to estimate 
F with a coplanar set of points 
Your sample set will be degenerate 
And will not bring you joy

When doing the estimation 
If you don't perform rank deprivation 
Your epipolar lines 
And the epipoles will not coincide

But if your scene has three views 
The trifocal tensor is what you'd use 
Constraints from the third view act like glue 
That can't be determined from just two views

视频来自Youtube: http://www.youtube.com/watch?v=DgGV3l82NTk

附带RANSAC Song链接http://danielwedge.com/ransac/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值