HDU1492 The number of divisors(约数) about Humble Numbers【约数】

The number of divisors(约数) about Humble Numbers

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4105    Accepted Submission(s): 2012


Problem Description
A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, ... shows the first 20 humble numbers.  

Now given a humble number, please write a program to calculate the number of divisors about this humble number.For examle, 4 is a humble,and it have 3 divisors(1,2,4);12 have 6 divisors.

 

Input
The input consists of multiple test cases. Each test case consists of one humble number n,and n is in the range of 64-bits signed integer. Input is terminated by a value of zero for n.
 

Output
For each test case, output its divisor number, one line per case.
 

Sample Input
  
4 12 0
 

Sample Output
  
3 6
 

Author
lcy
 

Source


问题链接HDU1492 The number of divisors(约数) about Humble Numbers

问题简述:参见上文

问题分析

计算谦虚数的约数数量问题。

根据题意,1是谦虚数;谦虚数是2,3,5和7的倍数;最小的谦虚数乘以2,3,5和7是谦虚数。

需要注意的是,谦虚数约数个数是2,3,5和7的指数的乘积。

程序说明 (略)

参考链接:(略)

题记(略)


AC的C++语言程序如下:

/* HDU1492 The number of divisors(约数) about Humble Numbers */

#include <iostream>
#include <stdio.h>

using namespace std;

const int N = 4;
int divisors[N] = {2, 3, 5, 7};

int main()
{
    long long n;

    while(scanf("%lld", &n) != EOF && n) {
        long long ans = 1;
        for(int i=0; i<N; i++) {
            int ecount = 0;
            while(n % divisors[i] == 0) {
                ecount++;
                n /= divisors[i];
            }
            ans *= ecount + 1;
        }

        printf("%lld\n", ans);
    }

    return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值