torch平台--编码-解码网络结构LSTM seq2seq代码超级详细解析

本文详细解析了基于Torch平台的LSTM编码-解码网络结构Seq2seq的代码,包括状态初始化和网络克隆等关键子函数。针对存在的疑问,如Seq2seq输入维度变化及状态维度问题进行探讨。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

原理部分网上很多,参考一篇总结博客:seq2seq学习笔记

可惜代码很少。因此我分享一篇我看了6个小时之后写的详细代码解析。

大约60行左右,希望大家耐心看下去。

 

子函数引入

状态初始化子函数layer:_createInitState

function layer:_createInitState(batch_size)
	if not self.init_state then self.init_state = {} end
	local times = 2 --2是怎么来的?因为LSTM有两个输入:1.新的输入 2.前一个状态的输入
	for h = 1, self.num_layers*times do --假设num_layer=1
		self.init_state[h] = torch.zeros(batch_size, self.rnn_size) --batch_size x 512 -- table
		if self.on_gpu then
			self.init_state[h] = self.init_state[h]:cuda()
		end
	end
	self.num_state = #self.init_state --2*16*512
end

网络克隆子函数layer:createClones()

function layer:createClones()
	print('constructing clones inside the D model')
	self.clones = {self.core} --已知core是LSTM网络
	self.lookup_tables = {self.lookup_ta
以下是一个示例代码,用于构建带有双向LSTM编码器、单向LSTM解码器和注意力机制的Seq2Seq模型: ```python import torch import torch.nn as nn class Encoder(nn.Module): def __init__(self, input_size, hidden_size, num_layers): super(Encoder, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.lstm = nn.LSTM(input_size, hidden_size, num_layers, bidirectional=True) def forward(self, inputs): # inputs shape: (seq_len, batch_size, input_size) outputs, (hidden, _) = self.lstm(inputs) # outputs shape: (seq_len, batch_size, hidden_size*num_directions) # hidden shape: (num_layers*num_directions, batch_size, hidden_size) return outputs, hidden class Attention(nn.Module): def __init__(self, hidden_size): super(Attention, self).__init__() self.hidden_size = hidden_size self.attn = nn.Linear(hidden_size*2, hidden_size) self.v = nn.Linear(hidden_size, 1, bias=False) def forward(self, encoder_outputs, decoder_hidden): # encoder_outputs shape: (seq_len, batch_size, hidden_size*num_directions) # decoder_hidden shape: (num_layers, batch_size, hidden_size) seq_len = encoder_outputs.size(0) batch_size = encoder_outputs.size(1) decoder_hidden = decoder_hidden[-1] # 取最后一层的隐藏状态作为decoder的输出 # 将decoder的隐藏状态复制seq_len次,用于计算注意力权重 decoder_hidden = decoder_hidden.unsqueeze(1).repeat(1, seq_len, 1) energy = torch.tanh(self.attn(torch.cat((encoder_outputs, decoder_hidden), dim=2))) # energy shape: (seq_len, batch_size, hidden_size) attention = self.v(energy).squeeze(2) # attention shape: (seq_len, batch_size) attention_weights = torch.softmax(attention, dim=0) # attention_weights shape: (seq_len, batch_size) # 计算加权后的encoder输出作为context向量 context = torch.bmm(encoder_outputs.permute(1, 2, 0), attention_weights.unsqueeze(2)).squeeze(2) # context shape: (batch_size, hidden_size*num_directions) return context, attention_weights class Decoder(nn.Module): def __init__(self, input_size, hidden_size, output_size, num_layers): super(Decoder, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.lstm = nn.LSTM(input_size, hidden_size, num_layers) self.fc = nn.Linear(hidden_size, output_size) def forward(self, inputs, hidden): # inputs shape: (1, batch_size, input_size) outputs, hidden = self.lstm(inputs, hidden) # outputs shape: (1, batch_size, hidden_size) # hidden shape: (num_layers, batch_size, hidden_size) outputs = self.fc(outputs.squeeze(0)) # outputs shape: (batch_size, output_size) return outputs.unsqueeze(0), hidden class Seq2Seq(nn.Module): def __init__(self, encoder, decoder): super(Seq2Seq, self).__init__() self.encoder = encoder self.decoder = decoder def forward(self, inputs, targets, teacher_forcing_ratio=0.5): # inputs shape: (seq_len, batch_size, input_size) # targets shape: (seq_len, batch_size, output_size) seq_len = targets.size(0) batch_size = targets.size(1) output_size = self.decoder.fc.out_features encoder_outputs, encoder_hidden = self.encoder(inputs) decoder_inputs = torch.zeros(1, batch_size, output_size).to(inputs.device) decoder_hidden = encoder_hidden # 使用encoder的最后一层隐藏状态作为decoder的初始隐藏状态 outputs = torch.zeros(seq_len, batch_size, output_size).to(inputs.device) for t in range(seq_len): decoder_output, decoder_hidden = self.decoder(decoder_inputs, decoder_hidden) outputs[t] = decoder_output # 使用teacher forcing或者上一个时间步的预测结果作为下一个时间步的输入 use_teacher_forcing = True if torch.rand(1).item() < teacher_forcing_ratio else False if use_teacher_forcing: decoder_inputs = targets[t].unsqueeze(0) else: decoder_inputs = decoder_output.argmax(dim=2).unsqueeze(0) return outputs # 定义模型的参数 input_size = 100 hidden_size = 256 output_size = 10 num_layers = 2 # 创建编码器和解码器实例 encoder = Encoder(input_size, hidden_size, num_layers) decoder = Decoder(output_size, hidden_size, output_size, num_layers) # 创建Seq2Seq模型实例 model = Seq2Seq(encoder, decoder) # 定义输入和目标序列的形状 seq_len = 20 batch_size = 32 inputs = torch.randn(seq_len, batch_size, input_size) targets = torch.randint(output_size, (seq_len, batch_size)) # 将输入和目标序列传递给模型 outputs = model(inputs, targets) # 打印输出的形状 print(outputs.shape) ``` 上述代码中,我们首先定义了编码器(`Encoder`)和解码器(`Decoder`)的模型结构,然后将它们组合成一个Seq2Seq模型(`Seq2Seq`),并定义了前向传播的逻辑。 在构建Seq2Seq模型时,我们使用了双向LSTM作为编码器,单向LSTM作为解码器,并添加了注意力机制(`Attention`)来帮助解码器在生成序列时关注输入序列的不同部分。 最后,我们创建了模型实例(`model`),并将输入和目标序列传递给模型进行前向传播,输出序列的预测结果。 请根据你的具体任务和数据进行相应的修改和调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值