图像的直方图不单单可以表示强度值(即像素值)分布情况,还可以表示图像像素点的梯度,运动方向等信息。
dims:表示要处理的参数数目,可以是强度值,梯度值,方向值等。本文只对像素点的强度值进行计算直方图操作,故dim=1.
bins:每一个dim下亚分割的箱子个数。本文中的bins=16.
range:像素值的测量范围。本文中range=[0,255]
具体的实现过程参考一下代码,及部分注释内容,未注释的部分已经在之前的文章中有所注释。本文下面给出了原图像和程序运行结果图像。
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
using namespace std;
using namespace cv;
int main( int argc, char** argv )
{
Mat src, dst;
//加载彩色图像
src = imread( argv[1], 1 );
if( !src.data )
{ return -1; }
//分割图像为3个通道即:B, G and R
vector<Mat> bgr_planes;
split( src, bgr_planes );
//创建箱子的数目
int histSize = 256;
//设置范围 ( for B,G,R) )
float range[] = { 0, 256 } ;//不包含上界256
const float* histRange = { range };
//归一化,起始位置直方图清除内容
bool uniform = true; bool accumulate = false;
Mat b_hist, g_hist, r_hist;
//计算每个平面的直方图
//&bgr_planes[]原数组,1原数组个数,0只处理一个通道,
//Mat()用于处理原来数组的掩膜,b_hist将要用来存储直方图的Mat对象
//1直方图的空间尺寸,histsize每一维的箱子数目,histrange每一维的变化范围
//uniform和accumulate箱子的大小一样,直方图开始的位置清除内容
calcHist( &bgr_planes[0], 1, 0, Mat(), b_hist, 1, &histSize, &histRange, uniform, accumulate );
calcHist( &bgr_planes[1], 1, 0, Mat(), g_hist, 1, &histSize, &histRange, uniform, accumulate );
calcHist( &bgr_planes[2], 1, 0, Mat(), r_hist, 1, &histSize, &histRange, uniform, accumulate );
//画直方图( B, G and R)
int hist_w = 512; int hist_h = 400;
int bin_w = cvRound( (double) hist_w/histSize );
Mat histImage( hist_h, hist_w, CV_8UC3, Scalar( 0,0,0) );
//归一化结果为 [ 0, histImage.rows ]
//b_hist输入数组,b_hist输出数组,
//0和histImage.rows归一化的两端限制值,
//NORM_MINMAX归一化类型 -1输出和输入类型一样,Mat()可选掩膜
normalize(b_hist, b_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
normalize(g_hist, g_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
normalize(r_hist, r_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );
//为每个通道画图
for( int i = 1; i < histSize; i++ )
{
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(b_hist.at<float>(i-1)) ) ,
Point( bin_w*(i), hist_h - cvRound(b_hist.at<float>(i)) ),
Scalar( 255, 0, 0), 2, 8, 0 );
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(g_hist.at<float>(i-1)) ) ,
Point( bin_w*(i), hist_h - cvRound(g_hist.at<float>(i)) ),
Scalar( 0, 255, 0), 2, 8, 0 );
line( histImage, Point( bin_w*(i-1), hist_h - cvRound(r_hist.at<float>(i-1)) ) ,
Point( bin_w*(i), hist_h - cvRound(r_hist.at<float>(i)) ),
Scalar( 0, 0, 255), 2, 8, 0 );
}
//显示输出结果
namedWindow("calcHist Demo", CV_WINDOW_AUTOSIZE );
imshow("calcHist Demo", histImage );
waitKey(0);
return 0;
}
