Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S 1, S 2, S 3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x ≤ 32767). We define a function sum(i, j) = S i + ... + S j (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i 2, j 2) + sum(i 3, j 3) + ... + sum(i m, j m) maximal (i x ≤ i y ≤ j x or i x ≤ j y ≤ j x is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^
Given a consecutive number sequence S 1, S 2, S 3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x ≤ 32767). We define a function sum(i, j) = S i + ... + S j (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i 2, j 2) + sum(i 3, j 3) + ... + sum(i m, j m) maximal (i x ≤ i y ≤ j x or i x ≤ j y ≤ j x is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^
Process to the end of file.
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
6
8
Huge input, scanf and dynamic programming is recommended.
题意:加强版的最大子段和,现在不是找一段了,是找不相交的m段的最大和
思路:dp[i][j]表示的是第j个数出现在第i段的最大值
状态转移方程:dp[i][j]=max(dp[i][j-1]+a[j],max(dp[i-1][k]));
就是分为了两种情况
1.是第j个数作为第i段的第一个数
2.不是第一个数
优化:但是这个的数据量特别大,直接做的话既会超时又会超空间
空间优化:因为根据状态转移方程我们需要的最多也就两维,所以用滚动数组就可以了,在优化的话,其实直接开一维数组就可以
时间优化:我们可以优化的地方其实就是三重循环的最内层,因为我们其实不需要每次都循环计算,会有好多重复的计算,我们只需要维护一下前边的和就可以了
ac代码:
#include <iostream> #include <cstdio> #include <cstring> using namespace std; int a[1000005]; int dp[1000005]; int pre[1000005]; int main() { int n,m; while(cin>>m>>n) { for(int i=1;i<=n;i++) scanf("%d",&a[i]); memset(dp,0,sizeof(dp)); memset(pre,0,sizeof(pre)); int max1; for(int i=1;i<=m;i++) { max1=-100000000; for(int j=i;j<=n;j++) { dp[j]=max(dp[j-1]+a[j],pre[j-1]+a[j]); pre[j-1]=max1; max1=max(max1,dp[j]); } } cout<<max1<<endl; } return 0; }