TrickGCD
Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total Submission(s): 969 Accepted Submission(s): 372
Problem Description
You are given an array A ,
and Zhu wants to know there are how many different array B satisfy
the following conditions?
* 1≤Bi≤Ai
* For each pair( l , r ) (1≤l≤r≤n) , gcd(bl,bl+1...br)≥2
* 1≤Bi≤Ai
* For each pair( l , r ) (1≤l≤r≤n) , gcd(bl,bl+1...br)≥2
Input
The first line is an integer T(1≤T≤10)
describe the number of test cases.
Each test case begins with an integer number n describe the size of array A.
Then a line contains n numbers describe each element of A
You can assume that 1≤n,Ai≤105
Each test case begins with an integer number n describe the size of array A.
Then a line contains n numbers describe each element of A
You can assume that 1≤n,Ai≤105
Output
For the kth
test case , first output "Case #k: " , then output an integer as answer in a single line . because the answer may be large , so you are only need to output answer mod 109+7
Sample Input
1 4 4 4 4 4
Sample Output
Case #1: 17
比赛的时候写了一个o(n^2)的算法超时了一直也没找到解决办法,看了题解之后就懂了,当我们要除以一个 i 的时候,有好多数/i的商是一样的这些数就可以一块计算,这样的话就把o(n)的算法变为o(log n)
题意:给你一个数组a,让我们确定b数组可以的情况数,当然数组b要满足题目中的两个条件
思路:首先我们可以枚举gcd的值,然后每个gcd对结果的贡献就是a[i]/gcd的乘积(这里就用到一开始提到的算法把o(n)降为o(log n)),但是这样算的话会出现大量重复,但是只需要简单的容斥就可以解决了
ac代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <map>
#include <cmath>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <functional>
using namespace std;
#define LL long long
const int INF = 0x3f3f3f3f;
const LL mod = 1000000007;
int sum[100009], n;
LL x[100009];
LL phi[100005];
LL qpow(LL x, LL y)
{
LL ans = 1;
while (y)
{
if (y & 1) ans = (ans*x) % mod;
y >>= 1;
x = (x*x) % mod;
}
return ans;
}
int main()
{
int t, cas = 1;
scanf("%d", &t);
while (t--)
{
int n,m;
cin>>n;
memset(sum,0,sizeof(sum));
memset(x,0,sizeof(x));
int max1=-1;
for(int i=0;i<n;i++)
{
scanf("%d",&m);
sum[m]++;
max1=max(max1,m);
}
for(int i=1;i<=max1;i++)
sum[i]+=sum[i-1];
for(int i=2;i<=max1;i++)
{
x[i]=1;
if(sum[i-1])
{
x[i]=0;
continue;
}
int yh=0;
for(int j=i;j<=max1;j+=i)
{
int min1=min(max1,j+i-1);
int ph=sum[min1]-sum[j-1];
yh+=ph;
int b=j/i;
x[i]=x[i]*qpow((long long)b,(long long)ph)%mod;
}
if(yh!=n)
x[i]=0;
}
for(int i=max1;i>=2;i--)
{
for(int j=i+i;j<=max1;j+=i)
{
x[i]=(x[i]-x[j]+mod)%mod;
}
}
long long ans=0;
for(int i=2;i<=max1;i++)
ans=(ans+x[i])%mod;
printf("Case #%d: %lld\n",cas++,ans);
}
return 0;
}
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <map>
#include <cmath>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <functional>
using namespace std;
#define LL long long
const int INF = 0x3f3f3f3f;
const LL mod = 1000000007;
int sum[100009], n;
LL x[100009];
LL phi[100005];
LL qpow(LL x, LL y)
{
LL ans = 1;
while (y)
{
if (y & 1) ans = (ans*x) % mod;
y >>= 1;
x = (x*x) % mod;
}
return ans;
}
int main()
{
int t, cas = 1;
scanf("%d", &t);
while (t--)
{
int n,m;
cin>>n;
memset(sum,0,sizeof(sum));
memset(x,0,sizeof(x));
int max1=-1;
for(int i=0;i<n;i++)
{
scanf("%d",&m);
sum[m]++;
max1=max(max1,m);
}
for(int i=1;i<=max1;i++)
sum[i]+=sum[i-1];
for(int i=2;i<=max1;i++)
{
x[i]=1;
if(sum[i-1])
{
x[i]=0;
continue;
}
int yh=0;
for(int j=i;j<=max1;j+=i)
{
int min1=min(max1,j+i-1);
int ph=sum[min1]-sum[j-1];
yh+=ph;
int b=j/i;
x[i]=x[i]*qpow((long long)b,(long long)ph)%mod;
}
if(yh!=n)
x[i]=0;
}
for(int i=max1;i>=2;i--)
{
for(int j=i+i;j<=max1;j+=i)
{
x[i]=(x[i]-x[j]+mod)%mod;
}
}
long long ans=0;
for(int i=2;i<=max1;i++)
ans=(ans+x[i])%mod;
printf("Case #%d: %lld\n",cas++,ans);
}
return 0;
}