题目:点击打开链接
题意:已知a^n+b^n=c^n,给出n和a,求b,c,如果无解输出−1 −1。
分析:必须scanf才能过,时间卡的比较紧。
费马大定理
1. a^n+b^n=c^n,n>2时无解。
2. 当a为奇数时,
a=2⋅k+1
c=k^2+(k+1)^2
b=c−1
当 a 为偶数
a=2∗k+2
c=1+(k+1)^2
b=c−2
手动列个方程就解出来了。
代码:
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize(4)
#pragma comment(linker, "/STACK:102400000,102400000")
#include<unordered_map>
#include<unordered_set>
#include<algorithm>
#include<iostream>
#include<fstream>
#include<complex>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iomanip>
#include<string>
#include<cstdio>
#include<bitset>
#include<vector>
#include<cctype>
#include<cmath>
#include<ctime>
#include<stack>
#include<queue>
#include<deque>
#include<list>
#include<set>
#include<map>
using namespace std;
#define pt(a) cout<<a<<endl
#define debug test
#define mst(ss,b) memset((ss),(b),sizeof(ss))
#define rep(i,a,n) for (int i=a;i<=n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
#define ll long long
#define ull unsigned long long
#define pb push_back
#define mp make_pair
#define inf 0x3f3f3f3f
#define eps 1e-10
#define PI acos(-1.0)
typedef pair<int,int> PII;
const ll mod = 1e9+7;
const int N = 1e6+10;
ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);}
ll qp(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
int to[4][2]={{-1,0},{1,0},{0,-1},{0,1}};
int t,n,a,b,c;
int main() {
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
///cin>>t;
scanf("%d",&t);
while(t--) {
///cin>>n>>a;
scanf("%d%d",&n,&a);
if(n>2 || n==0 ) printf("-1 -1\n");///cout<<-1<<" "<<-1<<endl;
else {
if(n==1) printf("%d %d\n",a,2*a);///cout<<a<<" "<<2*a<<endl;
else if(a&1) b=(1+a*a)/2-1,c=b+1,printf("%d %d\n",b,c);///cout<<b<<" "<<c<<endl;
else b=(1+a*a/4)-2,c=b+2,printf("%d %d\n",b,c);///cout<<b<<" "<<c<<endl;
}
}
return 0;
}