题意
众所周知,度度熊喜欢图,尤其是联通的图。
今天,它在图上又玩出了新花样,新高度。有一张无重边的无向图, 求有多少个边集,使得删掉边集里的边后,图里恰好有
K
个连通块。
推荐题目:Codeforces #332 div 2 E Nuts (599E) 状压+树形+计数
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <queue>
#include <vector>
#include <iostream>
#include <map>
#define pii pair<int,int>
#define mp(a,b) make_pair<a,b>
#define xx first
#define yy second
#define mem(a) memset( a, 0, sizeof(a) )
using namespace std;
typedef long long ll;
ll dp[20][1<<15], f[1<<15], g[1<<15], f2[1000];
int fa[20], vis[1<<15];
int w[1<<15], n, m, k;
const ll mod = 1e9+9;
/*
dp[i][st]存的是现在有i个连通块,加入的点的情况是st
f[st]存的是这个连通块有多少个作为连通块的形态数(就是这个连通块包含的边怎么个删法使他还是个连通块,有多少种情况)
g[st]辅助数组
抓住 第一个点一定属于一个连通分量(所以通俗来说枚举子集时只需要枚举一半即可)
*/
int root( int x )
{
if( fa[x] == x ) return x;
else return root( fa[x] );
}
void merge( int a, int b )
{
if( root(a) == root(b) ) return ;
int pa, pb;
pa = root(a);
pb = root(b);
fa[pa] = pb;
return ;
}
int lowbit( int x )
{
return x&-x;
}
void solve()
{
int i, j, st;
cin >> n >> m >> k;
mem(f);mem(g);mem(vis);
for( i = 0; i < n; i ++ )fa[i] = i;
for( i = 1; i <= m; i ++ ){
int x, y;
scanf("%d %d", &x, &y);
x --; y -- ;
for( j = 0; j < (1<<n); j ++ ){
if( ( j&(1<<x) ) && ( j&(1<<y) ) ){
f[j] ++;
}
}
merge( x, y );
}// 用并查集判连通
for( st = 1; st < (1<<n); st ++ ){
int p = lowbit(st), to = -1, fail = 0;
for( i = 0; i < n; i ++ ){
if( st & ( 1 << i ) ){
if( to == -1 ){
to = root(i);
}
else{
if( root(i) != to ){
fail = 1;
break;
}
}
}
}
if( fail ){
continue;
}
else vis[st] = 1;
f[st] = f2[f[st]];
g[st] = f[st];
for( j = st; j ; j = (j-1) & st ){
if( j == st ) continue;
if( !vis[j] ) continue;
if( j & p ){
f[st] -= ((ll)f[j]*g[j^st])%mod;
f[st] %= mod;
}
}
}// vis数组判这个子集本身是否连通,不联通f g = 0(可以不用判断)
memset( dp, 0, sizeof(dp) );
dp[0][0] = 1;
for( i = 1; i <= k; i ++ ){
for( st = 1; st < (1<<n); st ++ ){
int p = lowbit(st), sub;
for( sub = st; sub; sub = ( sub - 1 )&st ){
if( !vis[sub] ) continue;
if( p & sub ){
dp[i][st] += ( (ll)dp[i-1][sub^st]*f[sub] )%mod;
dp[i][st] %= mod;
}
}
}
}
ll ans = (dp[k][(1<<n)-1]+mod)%mod;
printf("%lld\n", ans);
}
void init()
{
f2[0] = 1;
for( ll i = 1; i <= 999; i ++ ){
f2[i] = f2[i-1]*2%mod;
}
}
int main()
{
int cas = 1, T;
init();
cin >> T;
while( T -- ){
printf("Case #%d:\n", cas ++);
solve();
}
}