How to - Create a custom layout manager for a screen

本文介绍如何通过继承 net.rim.device.api.ui.Manager 类并实现 getPreferredWidth(), getPreferredHeight() 和 sublayout() 方法来创建自定义布局管理器。此外,还展示了如何重写 nextFocus() 方法以实现自定义导航。

Procedure

You can create your own custom layout manager by extending the net.rim.device.api.ui.Manager class and customizing it to fit your needs. Custom layout managers enable you to customize the placement of fields on the screen and customize navigation within these fields. To do this, you need to implement at least the following three methods:

    • public int getPreferredWidth()
    • This method returns the manager's preferred width.

    • public int getPreferredHeight()
    • This method returns the manager's preferred height.

    • public void sublayout(int height, int width)
    • This method is invoked by the manager's layout() method and instructs each child field how and where to be laid out.

This can be accomplished by calling Manager.setPositionChild(Field field, int x, int y) and LayoutChild(Field field, int width, int height) for each field contained in the manager.

Here is an example of how a screen can associate itself with a custom layout manager:

/*********************
Layout Manager
*********************/
class LayoutManager extends Manager {
   public LayoutManager() {
       //construct a manager with vertical scrolling
       super(Manager.VERTICAL_SCROLL);
   }
   //overwrite the nextFocus method for custom navigation
   protected int nextFocus(int direction, boolean alt) {
       //retrieve the index of the current field that is selected
       int index= this.getFieldWithFocusIndex();
       if(alt) {
           if(direction 0){...}
               else{...}
       }
      // if we did not handle it, let the manager's parent class
      if (index == this.getFieldWithFocusIndex())
          return super.nextFocus(direction, alt);
      else
          return index;
   }
   protected void sublayout(int width, int height) {
       Field field;
       //get total number of fields within this manager
       int numberOfFields = getFieldCount();
       int x = 0;
       int y = 0;
       for (int i = 0;i < numberOfFields;i++) {
           field = getField(i); //get the field
           setPositionChild(field,x,y); //set the position for the field
           layoutChild(field, width, height); //lay out the field
           y += ...;
           ...
       }
       setExtent(width, height);
   }
   public int getPreferredWidth() {
       return 160;
   }
   public int getPreferredHeight() {
       int height= 0;
       int numberOfFields= getFieldCount();
       for (int i= 0; i < numberOfFields; i++) {
           height+= getField(i).getPreferredHeight();
           return height;
       }
   }
   /****************
    Main Class
   ****************/
   ...
   RichTextField myField = new RichTextField("Hello");
   RichTextField myOtherField = new RichTextField("World");
   LayoutManager myManager = new LayoutManager();
   MainScreen myScreen = new MainScreen();
   myScreen.add(myManager);
   myManager.add(myField);
   myManager.add(myOtherField);
   ...

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值