The sigmoid function

本文深入探讨了Sigmoid函数的基本概念及其在神经网络中的应用。通过详细的解析,读者可以了解到Sigmoid函数如何帮助解决连续输出的问题,并附有进一步阅读的相关链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Continuous Output - The sigmoid function

sigmoid函数,参见以下链接

http://computing.dcu.ie/~humphrys/Notes/Neural/sigmoid.html
import numpy as np def sigmoid(x): # the sigmoid function return 1/(1+np.exp(-x)) class LogisticReg(object): def __init__(self, indim=1): # initialize the parameters with all zeros # w: shape of [d+1, 1] self.w = np.zeros((indim + 1, 1)) def set_param(self, weights, bias): # helper function to set the parameters # NOTE: you need to implement this to pass the autograde. # weights: vector of shape [d, ] # bias: scaler def get_param(self): # helper function to return the parameters # NOTE: you need to implement this to pass the autograde. # returns: # weights: vector of shape [d, ] # bias: scaler def compute_loss(self, X, t): # compute the loss # X: feature matrix of shape [N, d] # t: input label of shape [N, ] # NOTE: return the average of the log-likelihood, NOT the sum. # extend the input matrix # compute the loss and return the loss X_ext = np.concatenate((X, np.ones((X.shape[0], 1))), axis=1) # compute the log-likelihood def compute_grad(self, X, t): # X: feature matrix of shape [N, d] # grad: shape of [d, 1] # NOTE: return the average gradient, NOT the sum. def update(self, grad, lr=0.001): # update the weights # by the gradient descent rule def fit(self, X, t, lr=0.001, max_iters=1000, eps=1e-7): # implement the .fit() using the gradient descent method. # args: # X: input feature matrix of shape [N, d] # t: input label of shape [N, ] # lr: learning rate # max_iters: maximum number of iterations # eps: tolerance of the loss difference # TO NOTE: # extend the input features before fitting to it. # return the weight matrix of shape [indim+1, 1] def predict_prob(self, X): # implement the .predict_prob() using the parameters learned by .fit() # X: input feature matrix of shape [N, d] # NOTE: make sure you extend the feature matrix first, # the same way as what you did in .fit() method. # returns the prediction (likelihood) of shape [N, ] def predict(self, X, threshold=0.5): # implement the .predict() using the .predict_prob() method # X: input feature matrix of shape [N, d] # returns the prediction of shape [N, ], where each element is -1 or 1. # if the probability p>threshold, we determine t=1, otherwise t=-1
07-22
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值