LeakyReLU激活函数

文章介绍了PyTorch中LeakyReLU函数的构成、常见用法以及图像实现,强调了其在处理负数梯度和深度学习中的作用。

nn.LeakyReLU 是PyTorch中的Leaky Rectified Linear Unit(ReLU)激活函数的实现。Leaky ReLU是一种修正线性单元,它在非负数部分保持线性,而在负数部分引入一个小的斜率(通常是一个小的正数),以防止梯度消失问题。这种激活函数的数学表达式如下:
在这里插入图片描述
negative_slope:x为负数时的需要的一个系数,控制负斜率的角度。默认值:1e-2(0.01)

在这里插入图片描述

1.nn.LeakyReLU的函数构成

nn.LeakyReLU 是PyTorch中的Leaky Rectified Linear Unit(ReLU)激活函数的实现,它是torch.nn.Module的子类。下面是 nn.LeakyReLU 类的主要构成部分和参数:

class nn.LeakyReLU(negative_slope=0.01, inplace=False)

构造函数参数:

  • negative_slope(默认为0.01):这是Leaky ReLU激活函数的负斜率,即在输入值为负数时的斜率。它是一个浮点数,通常设置为一个小的正数,以控制在负数区域的线性部分的斜率。较小的值会导致更线性的行为,较大的值会导致更接近传统ReLU的行为。
  • inplace(默认为False):如果设置为True,则会在原地修改输入张量,否则将创建一个新的张量作为输出。原地操作可以节省内存,但可能会改变输入张量的值。

nn.LeakyReLU 在前向传播时将输入张量中的负值部分乘以 negative_slope,从而实现Leaky ReLU激活函数的效果。它通常用于深度神经网络中,以缓解梯度消失问题,并引入非线性变换。

在PyTorch中,我们可以使用nn.LeakyReLU类来创建Leaky ReLU激活函数,并可以通过参数来设置斜率。

2.nn.LeakyReLU的常见用法

以下是使用nn.LeakyReLU的一些常见用法:

  1. 创建Leaky ReLU激活函数层:
import torch.nn as nn

# 创建一个Leaky ReLU激活函数层,斜率为0.2(可以根据需要进行调整)
leaky_relu = nn.LeakyReLU(0.2)
  1. 对张量应用Leaky ReLU激活函数:
import torch

# 创建一个示例输入张量
input_tensor = torch.te
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值