tensorflow 实战(一) 猫狗大战

本文介绍了一个使用卷积神经网络(CNN)进行猫狗图像分类的项目,详细展示了从数据预处理、模型构建到训练和测试的全过程。采用TensorFlow框架,在Linux环境下实现了模型训练,并通过测试验证了模型的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据集链接:http://pan.baidu.com/s/1dFd8kmt 密码:psor
运行环境:linux16.04,TensorFlow -GPU版本,GTX960显卡

主要用到四个python文件:

  1. input_data.py

  2. model.py

  3. training.py

  4. test.py

input_data.py

import tensorflow as tf
import numpy as np
import os


# you need to change this to your data directory
train_dir = '/home/lei/PycharmProjects/Cats_vs_Dogs/data/train/'


def get_files(file_dir):
    '''
    Args:
        file_dir: file directory
    Returns:
        list of images and labels
    '''
    cats = []
    label_cats = []
    dogs = []
    label_dogs = []
    for file in os.listdir(file_dir):
        name = file.split(sep='.')
        if name[0] == 'cat':
            cats.append(file_dir + file)
            label_cats.append(0)
        else:
            dogs.append(file_dir + file)
            label_dogs.append(1)
    print('There are %d cats\nThere are %d dogs' % (len(cats), len(dogs)))

    image_list = np.hstack((cats, dogs))
    label_list = np.hstack((label_cats, label_dogs))

    temp = np.array([image_list, label_list])
    temp = temp.transpose()
    np.random.shuffle(temp)

    image_list = list(temp[:, 0])
    label_list = list(temp[:, 1])
    label_list = [int(float(i)) for i in label_list]

    return image_list, label_list



def get_batch(image, label, image_W, image_H, batch_size, capacity):
    '''
    Args:
        image: list type
        label: list type
        image_W: image width
        image_H: image height
        batch_size: batch size
        capacity: the maximum elements in queue
    Returns:
        image_batch: 4D tensor [batch_size, width, height, 3], dtype=tf.float32
        label_batch: 1D tensor [batch_size], dtype=tf.int32
    '''

    image = tf.cast(image, tf.string)
    label = tf.cast(label, tf.int32)

    # make an input queue
    input_queue = tf.train.slice_input_producer([image, label])

    label = input_queue[1]
    image_contents = tf.read_file(input_queue[0])
    image = tf.image.decode_jpeg(image_contents, channels=3)

    ######################################
    # data argumentation should go to here
    ######################################

    image = tf.image.resize_image_with_crop_or_pad(image, image_W, image_H)

    # if you want to test the generated batches of images, you might want to comment the following line.
    # 如果想看到正常的图片,请注释掉111行(标准化)和 126行(image_batch = tf.cast(image_batch, tf.float32))
    # 训练时不要注释掉!
    image = tf.image.per_image_standardization(image)

    image_batch, label_batch = tf.train.batch([image, label],
                                              batch_size=batch_size,
                                              num_threads=64,
                                              capacity=capacity)

    # you can also use shuffle_batch
    #    image_batch, label_batch = tf.train.shuffle_batch([image,label],
    #                                                      batch_size=BATCH_SIZE,
    #                                                      num_threads=64,
    #                                                      capacity=CAPACITY,
    #                                                      min_after_dequeue=CAPACITY-1)

    label_batch = tf.reshape(label_batch, [batch_size])
    image_batch = tf.cast(image_batch, tf.float32)

    return image_batch, label_batch

如果想要测试一下效果:

To test the generated batches of images
When training the model, DO comment the following codes


import matplotlib.pyplot as plt

BATCH_SIZE = 2
CAPACITY = 256
IMG_W = 208
IMG_H = 208

train_dir = '/home/lei/PycharmProjects/Cats_vs_Dogs/data/train/'

image_list, label_list = get_files(train_dir)
image_batch, label_batch = get_batch(image_list, label_list, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)

with tf.Session() as sess:
   i = 0
   coord = tf.train.Coordinator()
   threads = tf.train.start_queue_runners(coord=coord)

   try:
       while not coord.should_stop() and i<1:

           img, label = sess.run([image_batch, label_batch])

           # just test one batch
           for j in np.arange(BATCH_SIZE):
               print('label: %d' %label[j])
               plt.imshow(img[j,:,:,:])
               plt.show()
           i+=1

   except tf.errors.OutOfRangeError:
       print('done!')
   finally:
       coord.request_stop()
   coord.join(threads)

这部分主要是做图像的预处理,读取,裁剪等。

import tensorflow as tf

def inference(images, batch_size, n_classes):
    '''Build the model
    Args:
        images: image batch, 4D tensor, tf.float32, [batch_size, width, height, channels]
    Returns:
        output tensor with the computed logits, float, [batch_size, n_classes]
    '''
    #conv1, shape = [kernel size, kernel size, channels, kernel numbers]

    with tf.variable_scope('conv1') as scope:
        weights = tf.get_variable('weights',
                                  shape = [3,3,3, 16],
                                  dtype = tf.float32,
                                  initializer=tf.truncated_normal_initializer(stddev=0.1,dtype=tf.float32))
        biases = tf.get_variable('biases',
                                 shape=[16],
                                 dtype=tf.float32,
                                 initializer=tf.constant_initializer(0.1))
        conv = tf.nn.conv2d(images, weights, strides=[1,1,1,1], padding='SAME')
        pre_activation = tf.nn.bias_add(conv, biases)
        conv1 = tf.nn.relu(pre_activation, name= scope.name)

    #pool1 and norm1
    with tf.variable_scope('pooling1_lrn') as scope:
        pool1 = tf.nn.max_pool(conv1, ksize=[1,3,3,1],strides=[1,2,2,1],
                               padding='SAME', name='pooling1')
        norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001/9.0,
                          beta=0.75,name='norm1')

    #conv2
    with tf.variable_scope('conv2') as scope:
        weights = tf.get_variable('weights',
                                  shape=[3,3,16,16],
                                  dtype=tf.float32,
                                  initializer=tf.truncated_normal_initializer(stddev=0.1,dtype=tf.float32))
        biases = tf.get_variable('biases',
                                 shape=[16],
                                 dtype=tf.float32,
                                 initializer=tf.constant_initializer(0.1))
        conv = tf.nn.conv2d(norm1, weights, strides=[1,1,1,1],padding='SAME')
        pre_activation = tf.nn.bias_add(conv, biases)
        conv2 = tf.nn.relu(pre_activation, name='conv2')


    #pool2 and norm2
    with tf.variable_scope('pooling2_lrn') as scope:
        norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001/9.0,
                          beta=0.75,name='norm2')
        pool2 = tf.nn.max_pool(norm2, ksize=[1,3,3,1], strides=[1,1,1,1],
                               padding='SAME',name='pooling2')


    #local3
    with tf.variable_scope('local3') as scope:
        reshape = tf.reshape(pool2, shape=[batch_size, -1])
        dim = reshape.get_shape()[1].value
        weights = tf.get_variable('weights',
                                  shape=[dim,128],
                                  dtype=tf.float32,
                                  initializer=tf.truncated_normal_initializer(stddev=0.005,dtype=tf.float32))
        biases = tf.get_variable('biases',
                                 shape=[128],
                                 dtype=tf.float32,
                                 initializer=tf.constant_initializer(0.1))
        local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)

    #local4
    with tf.variable_scope('local4') as scope:
        weights = tf.get_variable('weights',
                                  shape=[128,128],
                                  dtype=tf.float32,
                                  initializer=tf.truncated_normal_initializer(stddev=0.005,dtype=tf.float32))
        biases = tf.get_variable('biases',
                                 shape=[128],
                                 dtype=tf.float32,
                                 initializer=tf.constant_initializer(0.1))
        local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4')


    # softmax
    with tf.variable_scope('softmax_linear') as scope:
        weights = tf.get_variable('softmax_linear',
                                  shape=[128, n_classes],
                                  dtype=tf.float32,
                                  initializer=tf.truncated_normal_initializer(stddev=0.005,dtype=tf.float32))
        biases = tf.get_variable('biases',
                                 shape=[n_classes],
                                 dtype=tf.float32,
                                 initializer=tf.constant_initializer(0.1))
        softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear')

    return softmax_linear

def losses(logits, labels):
    '''Compute loss from logits and labels
    Args:
        logits: logits tensor, float, [batch_size, n_classes]
        labels: label tensor, tf.int32, [batch_size]

    Returns:
        loss tensor of float type
    '''
    with tf.variable_scope('loss') as scope:
        cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits\
                        (logits=logits, labels=labels, name='xentropy_per_example')
        loss = tf.reduce_mean(cross_entropy, name='loss')
        tf.summary.scalar(scope.name+'/loss', loss)
    return loss

def trainning(loss, learning_rate):
    '''Training ops, the Op returned by this function is what must be passed to
        'sess.run()' call to cause the model to train.

    Args:
        loss: loss tensor, from losses()

    Returns:
        train_op: The op for trainning
    '''
    with tf.name_scope('optimizer'):
        optimizer = tf.train.AdamOptimizer(learning_rate= learning_rate)
        global_step = tf.Variable(0, name='global_step', trainable=False)
        train_op = optimizer.minimize(loss, global_step= global_step)
    return train_op

#%%
def evaluation(logits, labels):
  """Evaluate the quality of the logits at predicting the label.
  Args:
    logits: Logits tensor, float - [batch_size, NUM_CLASSES].
    labels: Labels tensor, int32 - [batch_size], with values in the
      range [0, NUM_CLASSES).
  Returns:
    A scalar int32 tensor with the number of examples (out of batch_size)
    that were predicted correctly.
  """
  with tf.variable_scope('accuracy') as scope:
      correct = tf.nn.in_top_k(logits, labels, 1)
      correct = tf.cast(correct, tf.float16)
      accuracy = tf.reduce_mean(correct)
      tf.summary.scalar(scope.name+'/accuracy', accuracy)
  return accuracy

model部分,两层卷积,两层全连接。

training.py

import os
import numpy as np
import tensorflow as tf
import input_data
import model

N_CLASSES = 2  # 猫和狗
IMG_W = 208  # resize图像,太大的话训练时间久
IMG_H = 208
BATCH_SIZE = 16
CAPACITY = 2000
MAX_STEP = 15000  # 一般大于10K
learning_rate = 0.0001  # 一般小于0.0001

train_dir = '/home/lei/PycharmProjects/Cats_vs_Dogs/data/train/'
logs_train_dir = '/home/lei/PycharmProjects/Cats_vs_Dogs/log/train/'

train, train_label = input_data.get_files(train_dir)
train_batch, train_label_batch = input_data.get_batch(train,
                                                      train_label,
                                                      IMG_W,
                                                      IMG_H,
                                                      BATCH_SIZE,
                                                      CAPACITY)
train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)
train_loss = model.losses(train_logits, train_label_batch)
train_op = model.trainning(train_loss, learning_rate)
train__acc = model.evaluation(train_logits, train_label_batch)
summary_op = tf.summary.merge_all()  # 这个是log汇总记录

# 产生一个会话
sess = tf.Session()
# 产生一个writer来写log文件
train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)
# 产生一个saver来存储训练好的模型
saver = tf.train.Saver()
# 所有节点初始化
sess.run(tf.global_variables_initializer())

# 队列监控
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)

try:
    # 执行MAX_STEP步的训练,一步一个batch
    for step in np.arange(MAX_STEP):
        if coord.should_stop():
            break
        # 启动以下操作节点,有个疑问,为什么train_logits在这里没有开启?
        _, tra_loss, tra_acc = sess.run([train_op, train_loss, train__acc])
        # 每隔50步打印一次当前的loss以及acc,同时记录log,写入writer
        if step % 50 == 0:
            print('Step %d, train loss = %.2f, train accuracy = %.2f%%' % (step, tra_loss, tra_acc * 100.0))
            summary_str = sess.run(summary_op)
            train_writer.add_summary(summary_str, step)
        # 每隔2000步,保存一次训练好的模型
        if step % 2000 == 0 or (step + 1) == MAX_STEP:
            checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
            saver.save(sess, checkpoint_path, global_step=step)

except tf.errors.OutOfRangeError:
    print('Done training -- epoch limit reached')
finally:
    coord.request_stop()

如果想要测试其中单独的一副图片:
test.py

from PIL import Image
import matplotlib.pyplot as plt
import input_data
import model
import os
import numpy as np
import tensorflow as tf


def get_one_image(train):
    '''Randomly pick one image from training data
    Return: ndarray
    '''
    n = len(train)
    ind = np.random.randint(0, n)
    img_dir = train[ind]

    image = Image.open(img_dir)
    plt.imshow(image)
    image = image.resize([208, 208])
    image = np.array(image)
    return image


def evaluate_one_image():
    '''Test one image against the saved models and parameters
    '''

    # you need to change the directories to yours.
    # train_dir = '/home/kevin/tensorflow/cats_vs_dogs/data/train/'
    train_dir = '/home/lei/PycharmProjects/Cats_vs_Dogs/data/train/'
    train, train_label = input_data.get_files(train_dir)
    image_array = get_one_image(train)


    with tf.Graph().as_default():
        BATCH_SIZE = 1
        N_CLASSES = 2

        image = tf.cast(image_array, tf.float32)
        image = tf.image.per_image_standardization(image)
        image = tf.reshape(image, [1, 208, 208, 3])
        logit = model.inference(image, BATCH_SIZE, N_CLASSES)

        logit = tf.nn.softmax(logit)

        x = tf.placeholder(tf.float32, shape=[208, 208, 3])

        # you need to change the directories to yours.
        # logs_train_dir = '/home/kevin/tensorflow/cats_vs_dogs/logs/train/'
        logs_train_dir = '/home/lei/PycharmProjects/Cats_vs_Dogs/log/train/'

        saver = tf.train.Saver()

        with tf.Session() as sess:

            print("Reading checkpoints...")
            ckpt = tf.train.get_checkpoint_state(logs_train_dir)
            if ckpt and ckpt.model_checkpoint_path:
                global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
                saver.restore(sess, ckpt.model_checkpoint_path)
                print('Loading success, global_step is %s' % global_step)
            else:
                print('No checkpoint file found')

            prediction = sess.run(logit, feed_dict={x: image_array})
            max_index = np.argmax(prediction)
            if max_index == 0:
                print('This is a cat with possibility %.6f' % prediction[:, 0])
            else:
                print('This is a dog with possibility %.6f' % prediction[:, 1])
    plt.imshow(image_array)
    plt.show()

evaluate_one_image()

跑出来效果还不错,测试了几张,准确率还行。

主要参考了:
https://blog.youkuaiyun.com/xingwei_09/article/details/79159591
https://blog.youkuaiyun.com/hjxu2016/article/details/75305123

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值