Android Low memory killer

http://blog.sina.com.cn/s/blog_4d66a3cb0100prfe.html


附上lowmemorykiller.c代码

/* drivers/misc/lowmemorykiller.c
 *
 * The lowmemorykiller driver lets user-space specify a set of memory thresholds
 * where processes with a range of oom_score_adj values will get killed. Specify
 * the minimum oom_score_adj values in
 * /sys/module/lowmemorykiller/parameters/adj and the number of free pages in
 * /sys/module/lowmemorykiller/parameters/minfree. Both files take a comma
 * separated list of numbers in ascending order.
 *
 * For example, write "0,8" to /sys/module/lowmemorykiller/parameters/adj and
 * "1024,4096" to /sys/module/lowmemorykiller/parameters/minfree to kill
 * processes with a oom_score_adj value of 8 or higher when the free memory
 * drops below 4096 pages and kill processes with a oom_score_adj value of 0 or
 * higher when the free memory drops below 1024 pages.
 *
 * The driver considers memory used for caches to be free, but if a large
 * percentage of the cached memory is locked this can be very inaccurate
 * and processes may not get killed until the normal oom killer is triggered.
 *
 * Copyright (C) 2007-2008 Google, Inc.
 *
 * This software is licensed under the terms of the GNU General Public
 * License version 2, as published by the Free Software Foundation, and
 * may be copied, distributed, and modified under those terms.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/oom.h>
#include <linux/sched.h>
#include <linux/rcupdate.h>
#include <linux/notifier.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/swap.h>
#include <linux/fs.h>
#include <linux/cpuset.h>

#ifdef CONFIG_HIGHMEM
#define _ZONE ZONE_HIGHMEM
#else
#define _ZONE ZONE_NORMAL
#endif

static uint32_t lowmem_debug_level = 1;
static short lowmem_adj[6] = {
	0,
	1,
	6,
	12,
};
static int lowmem_adj_size = 4;
static int lowmem_minfree[6] = {
	3 * 512,	/* 6MB */
	2 * 1024,	/* 8MB */
	4 * 1024,	/* 16MB */
	16 * 1024,	/* 64MB */
};
static int lowmem_minfree_size = 4;
static int lmk_fast_run = 1;

static unsigned long lowmem_deathpending_timeout;

#define lowmem_print(level, x...)			\
	do {						\
		if (lowmem_debug_level >= (level))	\
			pr_info(x);			\
	} while (0)

static int test_task_flag(struct task_struct *p, int flag)
{
	struct task_struct *t = p;

	do {
		task_lock(t);
		if (test_tsk_thread_flag(t, flag)) {
			task_unlock(t);
			return 1;
		}
		task_unlock(t);
	} while_each_thread(p, t);

	return 0;
}

static DEFINE_MUTEX(scan_mutex);

int can_use_cma_pages(gfp_t gfp_mask)
{
	int can_use = 0;
	int mtype = allocflags_to_migratetype(gfp_mask);
	int i = 0;
	int *mtype_fallbacks = get_migratetype_fallbacks(mtype);

	if (is_migrate_cma(mtype)) {
		can_use = 1;
	} else {
		for (i = 0;; i++) {
			int fallbacktype = mtype_fallbacks[i];

			if (is_migrate_cma(fallbacktype)) {
				can_use = 1;
				break;
			}

			if (fallbacktype == MIGRATE_RESERVE)
				break;
		}
	}
	return can_use;
}

void tune_lmk_zone_param(struct zonelist *zonelist, int classzone_idx,
					int *other_free, int *other_file,
					int use_cma_pages)
{
	struct zone *zone;
	struct zoneref *zoneref;
	int zone_idx;

	for_each_zone_zonelist(zone, zoneref, zonelist, MAX_NR_ZONES) {
		zone_idx = zonelist_zone_idx(zoneref);
		if (zone_idx == ZONE_MOVABLE) {
			if (!use_cma_pages)
				*other_free -=
				    zone_page_state(zone, NR_FREE_CMA_PAGES);
			continue;
		}

		if (zone_idx > classzone_idx) {
			if (other_free != NULL)
				*other_free -= zone_page_state(zone,
							       NR_FREE_PAGES);
			if (other_file != NULL)
				*other_file -= zone_page_state(zone,
							       NR_FILE_PAGES)
					      - zone_page_state(zone, NR_SHMEM);
		} else if (zone_idx < classzone_idx) {
			if (zone_watermark_ok(zone, 0, 0, classzone_idx, 0)) {
				if (!use_cma_pages) {
					*other_free -= min(
					  zone->lowmem_reserve[classzone_idx] +
					  zone_page_state(
					    zone, NR_FREE_CMA_PAGES),
					  zone_page_state(
					    zone, NR_FREE_PAGES));
				} else {
					*other_free -=
					  zone->lowmem_reserve[classzone_idx];
				}
			} else {
				*other_free -=
					   zone_page_state(zone, NR_FREE_PAGES);
			}
		}
	}
}

#ifdef CONFIG_HIGHMEM
void adjust_gfp_mask(gfp_t *gfp_mask)
{
	struct zone *preferred_zone;
	struct zonelist *zonelist;
	enum zone_type high_zoneidx;

	if (current_is_kswapd()) {
		zonelist = node_zonelist(0, *gfp_mask);
		high_zoneidx = gfp_zone(*gfp_mask);
		first_zones_zonelist(zonelist, high_zoneidx, NULL,
				&preferred_zone);

		if (high_zoneidx == ZONE_NORMAL) {
			if (zone_watermark_ok_safe(preferred_zone, 0,
					high_wmark_pages(preferred_zone), 0,
					0))
				*gfp_mask |= __GFP_HIGHMEM;
		} else if (high_zoneidx == ZONE_HIGHMEM) {
			*gfp_mask |= __GFP_HIGHMEM;
		}
	}
}
#else
void adjust_gfp_mask(gfp_t *unused)
{
}
#endif

void tune_lmk_param(int *other_free, int *other_file, struct shrink_control *sc)
{
	gfp_t gfp_mask;
	struct zone *preferred_zone;
	struct zonelist *zonelist;
	enum zone_type high_zoneidx, classzone_idx;
	unsigned long balance_gap;
	int use_cma_pages;

	gfp_mask = sc->gfp_mask;
	adjust_gfp_mask(&gfp_mask);

	zonelist = node_zonelist(0, gfp_mask);
	high_zoneidx = gfp_zone(gfp_mask);
	first_zones_zonelist(zonelist, high_zoneidx, NULL, &preferred_zone);
	classzone_idx = zone_idx(preferred_zone);
	use_cma_pages = can_use_cma_pages(gfp_mask);

	balance_gap = min(low_wmark_pages(preferred_zone),
			  (preferred_zone->present_pages +
			   KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
			   KSWAPD_ZONE_BALANCE_GAP_RATIO);

	if (likely(current_is_kswapd() && zone_watermark_ok(preferred_zone, 0,
			  high_wmark_pages(preferred_zone) + SWAP_CLUSTER_MAX +
			  balance_gap, 0, 0))) {
		if (lmk_fast_run)
			tune_lmk_zone_param(zonelist, classzone_idx, other_free,
				       other_file, use_cma_pages);
		else
			tune_lmk_zone_param(zonelist, classzone_idx, other_free,
				       NULL, use_cma_pages);

		if (zone_watermark_ok(preferred_zone, 0, 0, _ZONE, 0)) {
			if (!use_cma_pages) {
				*other_free -= min(
				  preferred_zone->lowmem_reserve[_ZONE]
				  + zone_page_state(
				    preferred_zone, NR_FREE_CMA_PAGES),
				  zone_page_state(
				    preferred_zone, NR_FREE_PAGES));
			} else {
				*other_free -=
				  preferred_zone->lowmem_reserve[_ZONE];
			}
		} else {
			*other_free -= zone_page_state(preferred_zone,
						      NR_FREE_PAGES);
		}

		lowmem_print(4, "lowmem_shrink of kswapd tunning for highmem "
			     "ofree %d, %d\n", *other_free, *other_file);
	} else {
		tune_lmk_zone_param(zonelist, classzone_idx, other_free,
			       other_file, use_cma_pages);

		if (!use_cma_pages) {
			*other_free -=
			  zone_page_state(preferred_zone, NR_FREE_CMA_PAGES);
		}

		lowmem_print(4, "lowmem_shrink tunning for others ofree %d, "
			     "%d\n", *other_free, *other_file);
	}
}

static int lowmem_shrink(struct shrinker *s, struct shrink_control *sc)
{
	struct task_struct *tsk;
	struct task_struct *selected = NULL;
	int rem = 0;
	int tasksize;
	int i;
	short min_score_adj = OOM_SCORE_ADJ_MAX + 1;
	int minfree = 0;
	int selected_tasksize = 0;
	short selected_oom_score_adj;
	int array_size = ARRAY_SIZE(lowmem_adj);
	int other_free;
	int other_file;
	unsigned long nr_to_scan = sc->nr_to_scan;

	if (nr_to_scan > 0) {
		if (mutex_lock_interruptible(&scan_mutex) < 0)
			return 0;
	}

	other_free = global_page_state(NR_FREE_PAGES);

	if (global_page_state(NR_SHMEM) + total_swapcache_pages() <
		global_page_state(NR_FILE_PAGES))
		other_file = global_page_state(NR_FILE_PAGES) -
						global_page_state(NR_SHMEM) -
						total_swapcache_pages();
	else
		other_file = 0;

	tune_lmk_param(&other_free, &other_file, sc);

	if (lowmem_adj_size < array_size)
		array_size = lowmem_adj_size;
	if (lowmem_minfree_size < array_size)
		array_size = lowmem_minfree_size;
	for (i = 0; i < array_size; i++) {
		minfree = lowmem_minfree[i];
		if (other_free < minfree && other_file < minfree) {
			min_score_adj = lowmem_adj[i];
			break;
		}
	}
	if (nr_to_scan > 0)
		lowmem_print(3, "lowmem_shrink %lu, %x, ofree %d %d, ma %hd\n",
				nr_to_scan, sc->gfp_mask, other_free,
				other_file, min_score_adj);
	rem = global_page_state(NR_ACTIVE_ANON) +
		global_page_state(NR_ACTIVE_FILE) +
		global_page_state(NR_INACTIVE_ANON) +
		global_page_state(NR_INACTIVE_FILE);
	if (nr_to_scan <= 0 || min_score_adj == OOM_SCORE_ADJ_MAX + 1) {
		lowmem_print(5, "lowmem_shrink %lu, %x, return %d\n",
			     nr_to_scan, sc->gfp_mask, rem);

		if (nr_to_scan > 0)
			mutex_unlock(&scan_mutex);

		return rem;
	}
	selected_oom_score_adj = min_score_adj;

	rcu_read_lock();
	for_each_process(tsk) {
		struct task_struct *p;
		short oom_score_adj;

		if (tsk->flags & PF_KTHREAD)
			continue;

		/* if task no longer has any memory ignore it */
		if (test_task_flag(tsk, TIF_MM_RELEASED))
			continue;

		if (time_before_eq(jiffies, lowmem_deathpending_timeout)) {
			if (test_task_flag(tsk, TIF_MEMDIE)) {
				rcu_read_unlock();
				/* give the system time to free up the memory */
				msleep_interruptible(20);
				mutex_unlock(&scan_mutex);
				return 0;
			}
		}

		p = find_lock_task_mm(tsk);
		if (!p)
			continue;

		oom_score_adj = p->signal->oom_score_adj;
		if (oom_score_adj < min_score_adj) {
			task_unlock(p);
			continue;
		}
		tasksize = get_mm_rss(p->mm);
		task_unlock(p);
		if (tasksize <= 0)
			continue;
		if (selected) {
			if (oom_score_adj < selected_oom_score_adj)
				continue;
			if (oom_score_adj == selected_oom_score_adj &&
			    tasksize <= selected_tasksize)
				continue;
		}
		selected = p;
		selected_tasksize = tasksize;
		selected_oom_score_adj = oom_score_adj;
		lowmem_print(3, "select '%s' (%d), adj %hd, size %d, to kill\n",
			     p->comm, p->pid, oom_score_adj, tasksize);
	}
	if (selected) {
		lowmem_print(1, "Killing '%s' (%d), adj %hd,\n" \
				"   to free %ldkB on behalf of '%s' (%d) because\n" \
				"   cache %ldkB is below limit %ldkB for oom_score_adj %hd\n" \
				"   Free memory is %ldkB above reserved.\n" \
				"   Free CMA is %ldkB\n" \
				"   Total reserve is %ldkB\n" \
				"   Total free pages is %ldkB\n" \
				"   Total file cache is %ldkB\n" \
				"   GFP mask is 0x%x\n",
			     selected->comm, selected->pid,
			     selected_oom_score_adj,
			     selected_tasksize * (long)(PAGE_SIZE / 1024),
			     current->comm, current->pid,
			     other_file * (long)(PAGE_SIZE / 1024),
			     minfree * (long)(PAGE_SIZE / 1024),
			     min_score_adj,
			     other_free * (long)(PAGE_SIZE / 1024),
			     global_page_state(NR_FREE_CMA_PAGES) *
				(long)(PAGE_SIZE / 1024),
			     totalreserve_pages * (long)(PAGE_SIZE / 1024),
			     global_page_state(NR_FREE_PAGES) *
				(long)(PAGE_SIZE / 1024),
			     global_page_state(NR_FILE_PAGES) *
				(long)(PAGE_SIZE / 1024),
			     sc->gfp_mask);

		if (lowmem_debug_level >= 2 && selected_oom_score_adj == 0) {
			show_mem(SHOW_MEM_FILTER_NODES);
			dump_tasks(NULL, NULL);
		}

		lowmem_deathpending_timeout = jiffies + HZ;
		send_sig(SIGKILL, selected, 0);
		set_tsk_thread_flag(selected, TIF_MEMDIE);
		rem -= selected_tasksize;
		rcu_read_unlock();
		/* give the system time to free up the memory */
		msleep_interruptible(20);
	} else
		rcu_read_unlock();

	lowmem_print(4, "lowmem_shrink %lu, %x, return %d\n",
		     nr_to_scan, sc->gfp_mask, rem);
	mutex_unlock(&scan_mutex);
	return rem;
}

static struct shrinker lowmem_shrinker = {
	.shrink = lowmem_shrink,
	.seeks = DEFAULT_SEEKS * 16
};

static int __init lowmem_init(void)
{
	register_shrinker(&lowmem_shrinker);
	return 0;
}

static void __exit lowmem_exit(void)
{
	unregister_shrinker(&lowmem_shrinker);
}

#ifdef CONFIG_ANDROID_LOW_MEMORY_KILLER_AUTODETECT_OOM_ADJ_VALUES
static short lowmem_oom_adj_to_oom_score_adj(short oom_adj)
{
	if (oom_adj == OOM_ADJUST_MAX)
		return OOM_SCORE_ADJ_MAX;
	else
		return (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
}

static void lowmem_autodetect_oom_adj_values(void)
{
	int i;
	short oom_adj;
	short oom_score_adj;
	int array_size = ARRAY_SIZE(lowmem_adj);

	if (lowmem_adj_size < array_size)
		array_size = lowmem_adj_size;

	if (array_size <= 0)
		return;

	oom_adj = lowmem_adj[array_size - 1];
	if (oom_adj > OOM_ADJUST_MAX)
		return;

	oom_score_adj = lowmem_oom_adj_to_oom_score_adj(oom_adj);
	if (oom_score_adj <= OOM_ADJUST_MAX)
		return;

	lowmem_print(1, "lowmem_shrink: convert oom_adj to oom_score_adj:\n");
	for (i = 0; i < array_size; i++) {
		oom_adj = lowmem_adj[i];
		oom_score_adj = lowmem_oom_adj_to_oom_score_adj(oom_adj);
		lowmem_adj[i] = oom_score_adj;
		lowmem_print(1, "oom_adj %d => oom_score_adj %d\n",
			     oom_adj, oom_score_adj);
	}
}

static int lowmem_adj_array_set(const char *val, const struct kernel_param *kp)
{
	int ret;

	ret = param_array_ops.set(val, kp);

	/* HACK: Autodetect oom_adj values in lowmem_adj array */
	lowmem_autodetect_oom_adj_values();

	return ret;
}

static int lowmem_adj_array_get(char *buffer, const struct kernel_param *kp)
{
	return param_array_ops.get(buffer, kp);
}

static void lowmem_adj_array_free(void *arg)
{
	param_array_ops.free(arg);
}

static struct kernel_param_ops lowmem_adj_array_ops = {
	.set = lowmem_adj_array_set,
	.get = lowmem_adj_array_get,
	.free = lowmem_adj_array_free,
};

static const struct kparam_array __param_arr_adj = {
	.max = ARRAY_SIZE(lowmem_adj),
	.num = &lowmem_adj_size,
	.ops = ¶m_ops_short,
	.elemsize = sizeof(lowmem_adj[0]),
	.elem = lowmem_adj,
};
#endif

module_param_named(cost, lowmem_shrinker.seeks, int, S_IRUGO | S_IWUSR);
#ifdef CONFIG_ANDROID_LOW_MEMORY_KILLER_AUTODETECT_OOM_ADJ_VALUES
__module_param_call(MODULE_PARAM_PREFIX, adj,
		    &lowmem_adj_array_ops,
		    .arr = &__param_arr_adj,
		    S_IRUGO | S_IWUSR, -1);
__MODULE_PARM_TYPE(adj, "array of short");
#else
module_param_array_named(adj, lowmem_adj, short, &lowmem_adj_size,
			 S_IRUGO | S_IWUSR);
#endif
module_param_array_named(minfree, lowmem_minfree, uint, &lowmem_minfree_size,
			 S_IRUGO | S_IWUSR);
module_param_named(debug_level, lowmem_debug_level, uint, S_IRUGO | S_IWUSR);
module_param_named(lmk_fast_run, lmk_fast_run, int, S_IRUGO | S_IWUSR);

module_init(lowmem_init);
module_exit(lowmem_exit);

MODULE_LICENSE("GPL");




    Android中,进程的生命周期都是由系统控制的,即使用户关掉了程序,进程依然是存在于内存之中。这样设计的目的是为了下次能快速启动。当然,随着系统运行时间的增长,内存会越来越少。Android Kernel 会定时执行一次检查,杀死一些进程,释放掉内存。

    那么,如何来判断,那些进程是需要杀死的呢?答案就是我们的标题:Low memory killer机制。

    Android Low memory killer是基于linuxOOMout of memory  规则改进而来的。 OOM通过一些比较复杂的评分机制,对进程进行打分,然后将分数高的进程判定为bad进程,杀死并释放内存。OOM只有当系统内存不足的时候才会启动检查,而Low memory killer 则是定时进行检查。

     Low memory killer 主要是通过进程的oom_adj 来判定进程的重要程度。oom_adj的大小和进程的类型以及进程被调度的次序有关。

     Low memory killer 的具体实现可参看:kernel/drivers/misc/lowmemorykiller.c 

     其原理很简单,在linux中,存在一个kswapd的内核线程,当linux回收存放分页的时候,kswapd线程将会遍历一张shrinker链表,并执行回调,定义如下:


     所以只要注册 Shrinker,变可以在内存分页回收时根据规则释放内存,下面我们来看看其实现。 

  首先定义shrinker结构体,lowmem_shrink为回调函数的指针,当有内存分页回收的时候,这个函数将会被调用。


 

   初始化模块时进行注册,结束时注销。



     Android中,存在着一张内存阈值表,这张阈值表是可以在init.rc中进行配置的,

合理配置这张表,对于小内存设备有非常重要的作用。

     我们来看lowmemorykiller.c中这张默认的阈值表:

 


 

Lowmeme_adj中各项数值代表阈值的警戒级数,lowmem_minfree代表对应级数的剩余内存。也就是说,当系统的剩余内存为小于6MB时候,警戒级数为0,当系统内存剩余小于8M而大于6M的时候,警戒级数为1,当内存小于64M大于16MB的时候,警戒级数为12. Low memory killer 的规则就是根据当前系统的剩余内存多少来获取当前的警戒级数,如果进程的oom_adj大于警戒级数并且最大,进程将会被杀死(相同omm_adj的,则杀死占用内存较多的)。Omm_adj越小,代表进程越重要。一些前台的进程,oom_adj会比较小,而后台的服务,omm_adj会比较大,所以当内存不足的时候,Low memory killer 杀掉的必然先杀掉的是后台服务而不是前台的进程。

OK,现在我们来看具体代码,也就是lowmem_shrink这个回调函数:

 


 

首先通过global_page_state获取当前剩余内存大小,然后根据剩余内存和内存阈值表查找当前的内存警戒数min_adj。接着遍历所有进程,找到oom_adj大于min_adj并且oom_adj最大的进程:

进程的oom_adj 小于警戒阈值,则无视。 


获取这个进程所占用的内存大小tasksize,如果小于比我们当前选出进程的内存,则无视。



如果大于则选中这个进程:


经过for_each的遍历,selected 就是我们选出要释放掉的bad进程,它具有下面两个条件:

  • Oom_adj大于当前警戒阈值并且最大
  • 在同样大小的oom_adj中,占用内存最多

 

最后,我们释放掉这个进程的内存,通过force_sig(SIGKILL, selected)来向进程发送一个不可以忽略或阻塞的SIGKILL信号。

 

阈值表可以通过/sys/module/lowmemorykiller/parameters/adj/sys/module/lowmemorykiller/parameters/minfree进行配置,例如在init.rc中:

# Write value must be consistent with the above properties.
   write /sys/module/lowmemorykiller/parameters/adj 0,1,2,7,14,15
 
   write /proc/sys/vm/overcommit_memory 1
   write /sys/module/lowmemorykiller/parameters/minfree 1536,2048,4096,5120,5632,6144
 
   class_start default
 

 

进程oom_adj同样可以进行设置,通过write /proc/<PID>/oom_adj  ,在init.rc中,init进程的pid1omm_adj被配置为-16,永远不会被杀死。

   # Set init its forked children's oom_adj.
   write /proc/1/oom_adj -16

 

   Low memory killer的基本原理我们应该弄清了,正如我前面所说的,进程omm_adj的大小是跟进程的类型以及进程被调度的次序有关。进程的类型,可以在ActivityManagerService中清楚的看到: 

    static final int EMPTY_APP_ADJ;

    static final int HIDDEN_APP_MAX_ADJ;

    static final int HIDDEN_APP_MIN_ADJ;

    static final int HOME_APP_ADJ;

    static final int BACKUP_APP_ADJ;

    static final int SECONDARY_SERVER_ADJ;

    static final int HEAVY_WEIGHT_APP_ADJ;

    static final int PERCEPTIBLE_APP_ADJ;

    static final int VISIBLE_APP_ADJ;

    static final int FOREGROUND_APP_ADJ;

    static final int CORE_SERVER_ADJ = -12;

    static final int SYSTEM_ADJ = -16; 

   ActivityManagerService定义各种进程的oom_adj,CORE_SERVER_ADJ代表一些核心的服务的omm_adj,数值为-12,由前面的分析可知道,这类进程永远也不会被杀死。

其他未赋值的都在static块中进行了初始化,是通过system/rootdir/init.rc进行配置的:


 

   在init.rc中:

# Define the oom_adj values for the classes of processes that can be

# killed by the kernel.  These are used in ActivityManagerService.

   setprop ro.FOREGROUND_APP_ADJ 0

   setprop ro.VISIBLE_APP_ADJ 1

   setprop ro.SECONDARY_SERVER_ADJ 2

   setprop ro.HIDDEN_APP_MIN_ADJ 7

   setprop ro.CONTENT_PROVIDER_ADJ 14

   setprop ro.EMPTY_APP_ADJ 15

 

# Define the memory thresholds at which the above process classes will

# be killed.  These numbers are in pages (4k).

   setprop ro.FOREGROUND_APP_MEM 1536

   setprop ro.VISIBLE_APP_MEM 2048

   setprop ro.SECONDARY_SERVER_MEM 4096

   setprop ro.HIDDEN_APP_MEM 5120

   setprop ro.CONTENT_PROVIDER_MEM 5632

   setprop ro.EMPTY_APP_MEM 6144

 

  由此我们知道EMPTY_APP 最容易被杀死,其实是CONTENT_PROVIDER FOREGROUND的进程很难被杀死。

  现在我们再来说影响oom_adj的第二个因素,进程的调度次序。这涉及到了ActivityManagerService的复杂调度,我们下次再来看吧。呵呵。

 

  See you next time !!!


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值