FINS5542 exercise 2


FINS5542 Assignment 2
Date Due: 11pm 12 July, with electronic submission via the course
website.
1. In this question we will conduct a backtesting exercise for the 1997
year. For each trading day in 1997 we must graph the 99% VaR that
was computed 10 trading days before and we must also graph the
realised loss in the portfolio that occurs over this same period.
One is required to produce two graphs. The first graph should be the
backtesting of the VaR method under normality. The second graph
should be the backtesting of the VaR method under historical sim-
ulation of daily changes in prices. Finally, one should interpret the
findings from both of these graphical displays, (noting presentation
quality is important).
For these exercises, assume that we hold a portfolio of 15 assets,
namely aan2, aan3, aan4, aan5 aan6, aan7, aan8, aan9, aan10, aan11,
aan14, aan15, aan17, aan18 and aan19 where $2,000,000 dollars was
the value of our holdings in each of the stocks ten trading days before
the first trading day in 1997. i.e. On 17 December 1996, the value of
our portfolio is $30,000,000. Also assume that the number of shares
we hold in each of these stocks does not change over the time frame
of our back-testing exercise. Finally, in computing the VaR estimates
one should use the last 800 changes in prices. The data is located on
the fins5542 Moodle page. See last page, for variable names.
In addition to printing out the Excel graphs, one should also print out
the Ox computer code.
[20 marks (for each method, 2 marks for coding, 4 marks for graph-
ing, 4 marks for write-up) ]
1
2. In this question we will conduct a backtesting exercise for a portfolio
of 6 stocks for the 2021 year. For each trading day in 2021 we must
graph the 99% VaR that was computed 10 trading days before and we
must also graph the realised loss in the portfolio that occurs over this
same period.
One is required to produce two graphs. The first graph should be the
backtesting of the VaR method under normality. The second graph
should be the backtesting of the VaR method under historical sim-
ulation of daily changes in prices. Finally, one should interpret the
findings from both of these graphical displays, (noting presentation
quality is important).
For these exercises, assume that $10,000,000 dollars was the value of
our holdings in each of the following 6 U.S. companies, Coca-Cola
Co., Home Depot Inc., Intel Corp., McDonald  s Corp., Walt Disney
Co. and Walmart Inc., (sourced from the CRSP database), ten trading
days before the first trading day in 2021. Also assume that the number
of shares we hold in each of these stocks does not change over the time
frame of our back-testing exercise. Finally, in computing the VaR
estimates one should use the last 900 changes in prices.
In addition to printing out the Excel graphs, one should also print out
the Ox computer code.
[30 marks (for each method, 3 marks for coding, 3 marks for data
description, 4 marks for graphing, 5 marks for write-up) ]
3. Discuss, in less than 1200 words, the limitations of VaR and Ex-
pected Shortfall, relating these to the results you obtained above in
questions 1 and 2.
Please include appropriate references, with a reference section. Both
content and writing quality are key criteria of equal importance.
[30 marks]
2
Variable Name
aan1 CISCO SYSTEMS INC
aan2 MICROSOFT CORP
aan3 INTEL CORP
aan4 TEXAS INSTRUMENTS INC
aan5 SPRINT CORP
aan6 AMGEN INC
aan7 INTERPUBLIC GROUP COS INC
aan8 MELLON BANK CORP
aan9 WARNER LAMBERT CO
aan10 BRISTOL MYERS SQUIBB CO
aan11 ENRON CORP
aan12 GENERAL ELECTRIC CO
aan13 TIME WARNER INC
aan14 EXXON CORP
aan15 DELL COMPUTER CORP
aan16 AMERICAN EXPRESS CO
aan17 SUN MICROSYSTEMS INC
aan18 CORNING INC
aan19 FORD MOTOR CO DEL
 

【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值