MA2605 使用matlab解答

本篇作业要求学生使用LaTeX编写报告,解决涉及初始值问题和边界值问题的数值微分方程。任务包括求解一阶线性常微分方程,比较各种数值方法(如ForwardEuler、Trapezoidal和Runge-Kutta)的误差,以及分析不同方法的优缺点。学生需提交MATLAB代码和报告PDF,遵守学术诚信规定。


MA2605 – Professional Development and Project Work
Assignment 3
Distribution Date: Friday December 1st , 2023
Submission Deadline: 23:59 Friday December 29th, 2023
(through Wiseflow)
Feedback by: After exam panels and boards
Contribution to overall module assessment: 50%
Indicative student time working on
assessment:
20 hours
Main objective of the assessment: The objective of this task is to solve a range of problems
involving the numerical solution of differential equations. Solutions must be written up using LaTeX,
and numerical methods must be coded using MATLAB.
Description of the Assessment: Each student must submit a report (a single .pdf file), written using
LaTeX (article style). There is no hard page limit, but it should be possible to answer all questions
successfully without writing more than 10 pages. All MATLAB codes used to generate results in the
report should also be submitted in a .zip file, and it should be clearly stated in your answer to each
question which code(s) correspond(s) to that question. The report should be clearly titled, and should
address the solution of the following problems (in each question, 𝛼𝛼 and 𝛽𝛽 are, respectively, the last
and second to last non-zero digits of your student number - note also that most parts can be solved
independently, i.e. if you get stuck on one part then that should not prevent you from attempting the
other parts):
1. Consider the initial value problem:
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = cos  
𝛼𝛼𝛼𝛼
4   , 𝑦𝑦(0) = 0, 0 ≤ 𝑡𝑡 ≤ 𝛽𝛽.
a. By showing that cos  
𝛼𝛼𝑦𝑦
4   satisfies a particular condition (which you should state),
show that the problem has a unique solution. [10 marks]
b. Find the exact solution, showing your working. (Hint: you may find the following
formula helpful:
  sec(𝑦𝑦) 𝑑𝑑𝑑𝑑 = ln  tan  
𝑦𝑦
2 +
𝜋𝜋
4
   + 𝐶𝐶 ,
where C is a constant.) [10 marks]
c. Use the Forward Euler Method to approximate the solution to the initial value
problem, and draw up a table comparing the error at 𝑡𝑡 = 𝛽𝛽 for an appropriate range of
time steps. Calculate: 𝑝𝑝 = log2  
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 2𝜏𝜏
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝜏𝜏   for appropriate
values of τ, and explain how this could be used to test the conjecture: 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐶𝐶𝜏𝜏𝑝𝑝,
where 𝐶𝐶 is constant. [10 marks]
d. Repeat part c for the Trapezoidal method (an implicit method), using Fixed Point
Iteration to compute the results at each step. [10 marks]
e. Repeat part c using the modified Euler (predictor-corrector) method, for which you
should use the forward Euler method as a predictor, inserting that solution into the
right-hand side of the trapezoidal method equation. [10 marks]
f. Explicitly write out the steps of the four stage Runge Kutta method given by the
following Butcher Tableau, and then repeat part c using this method: [10 marks]
0 0 0 0 0
½ ½ 0 0 0
½ 0 ½ 0 0
1 0 0 1 0
1/6 1/3 1/3 1/6
g. Comment on the advantages and disadvantages of using each of the methods from
parts (c)-(f) above, for solving initial value problems such as the one in this question
[10 marks]
2. Consider the boundary value problem:
− 𝑑𝑑2𝑦𝑦
𝑑𝑑𝑥𝑥2 = 𝛼𝛼𝑥𝑥2 − 𝛽𝛽, 𝑥𝑥 ∈ (−1,1),
𝑦𝑦(−1) = 𝑦𝑦(1) = 0.
a. Determine the exact solution, by direct integration or otherwise. [10 marks]
b. Suppose 𝑁𝑁 is a positive even integer, ℎ = 2
𝑁𝑁, and define 𝑥𝑥𝑗𝑗 = −1 + 𝑗𝑗ℎ,𝑗𝑗 = 0, … , 𝑁𝑁.
Consider the following finite difference scheme for the numerical solution of the
boundary value problem:
−  𝑌𝑌𝑗𝑗+1 − 2𝑌𝑌𝑗𝑗 + 𝑌𝑌𝑗𝑗−1
ℎ2   = 𝛼𝛼𝑥𝑥𝑗𝑗
2 − 𝛽𝛽, 𝑗𝑗 = 1, … , 𝑁𝑁 − 1,
𝑌𝑌0 = 0, 𝑌𝑌𝑁𝑁 = 0,
where 𝑌𝑌𝑗𝑗 ≈ 𝑦𝑦 𝑥𝑥𝑗𝑗 , 𝑗𝑗 = 0, … , 𝑁𝑁. Rewrite this difference scheme as a system of linear
equations in matrix form with a vector of unknowns 𝑌𝑌 = (𝑌𝑌1, … , 𝑌𝑌𝑁𝑁−1)𝑇𝑇, and
comment on the structure of the matrix. [10 marks]
c. Write a code to compute 𝑌𝑌 for any given input 𝑁𝑁, and plot 𝑌𝑌 and the error on
different graphs, each for an appropriate range of values of 𝑁𝑁. Comment on your
results. [10 marks]
Learning outcomes to be assessed: The module learning outcomes relevant to this assessment are:
• Plan and implement numerical methods for differential equations using an appropriate
programming language. Illustrate the results using the language's graphics facilities. Analyse
and interpret the results of the numerical implementation in terms of the original problem;
• Choose with confidence and manipulate accurately the appropriate techniques to solve
problems with linear differential equations, including providing criteria for the accuracy of
numerical methods;
• Demonstrate the knowledge and understanding of the multiple skills necessary to operate in a
professional environment
Marking: the total mark available for this assignment is worth up to 50% of the available overall
mark for the module. Marks (out of 100) will be awarded for answers to the questions listed above
according to the stated mark distribution.
Submission instructions: Submission should be through WISEflow. Each student should submit
two files:
1. A single .pdf file, containing the full report. The name of this file should include the module
code and your student ID number, e.g. MA2605_1234567.pdf.
2. A zip file containing all MATLAB (.m) files used to generate the results in the .pdf. The
name of this file should also include the module code and your student ID number, e.g.
MA2605_1234567.zip.
If you are unsure how to download your .pdf file from Overleaf into a folder on your computer, then
please follow the instructions given in the following link:
https://www.overleaf.com/learn/how-to/Downloading_a_Project
Note that the first part of the instructions creates a .zip file containing all of the source files but not the
.pdf file. You will need to download the .pdf file separately by following the instructions on how to
download the finished .pdf. Please remember to back up your files periodically; it is your
responsibility to make sure that your files are securely backed up, and the safest way to do this is by
using the filestore at Brunel – details of how to do this can be found at:
https://intra.brunel.ac.uk/s/cc/kb/Pages/Saving-work-on-your-filestore-at-Brunel.aspx
You can login into Wiseflow directly at https://europe.wiseflow.net/login/uk/brunel.
Plagiarism and references: The university’s standard rules on plagiarism and collusion apply (see
https://www.brunel.ac.uk/life/library/SubjectSupport/Plagiarism for more information). This is an
individual assignment, and work submitted must be your own. Information from any research
undertaken (e.g., in text books or online) should be given credit where appropriate. The lecture on
academic misconduct and plagiarism, given on Thursday October 19th (week 6, lecture 13) is
available for viewing via the course Brightspace page, and you are strongly encouraged to watch this
if you have not done so already.
Please familiarise yourself with the university’s guidelines to students on the use of AI,
see https://students.brunel.ac.uk/study/using-artificial-intelligence-in-your-studies.
Late submission: The clear expectation is that you will submit your coursework by the submission
deadline. In line with the University’s policy on the late submission of coursework, coursework
submitted up to 48 hours late will be capped at a threshold pass (D-). Work submitted over 48 hours
after the stated deadline will automatically be given a fail grade (F). Please refer to
https://students.brunel.ac.uk/study/cedps/welcome-to-mathematics for information on submitting late
work, penalties applied, and procedures in the case of extenuating circumstances. 
wechat codinghelp

采用PyQt5框架与Python编程语言构建图书信息管理平台 本项目基于Python编程环境,结合PyQt5图形界面开发库,设计实现了一套完整的图书信息管理解决方案。该系统主要面向图书馆、书店等机构的日常运营需求,通过模块化设计实现了图书信息的标准化管理流程。 系统架构采用典型的三层设计模式,包含数据存储层、业务逻辑层和用户界面层。数据持久化方案支持SQLite轻量级数据库与MySQL企业级数据库的双重配置选项,通过统一的数据库操作接口实现数据存取隔离。在数据建模方面,设计了包含图书基本信息、读者档案、借阅记录等核心数据实体,各实体间通过主外键约束建立关联关系。 核心功能模块包含六大子系统: 1. 图书编目管理:支持国际标准书号、中国图书馆分类法等专业元数据的规范化著录,提供批量导入与单条录入两种数据采集方式 2. 库存动态监控:实时追踪在架数量、借出状态、预约队列等流通指标,设置库存预警阈值自动提醒补货 3. 读者服务管理:建立完整的读者信用评价体系,记录借阅历史与违规行为,实施差异化借阅权限管理 4. 流通业务处理:涵盖借书登记、归还处理、续借申请、逾期计算等标准业务流程,支持射频识别技术设备集成 5. 统计报表生成:按日/月/年周期自动生成流通统计、热门图书排行、读者活跃度等多维度分析图表 6. 系统维护配置:提供用户权限分级管理、数据备份恢复、操作日志审计等管理功能 在技术实现层面,界面设计遵循Material Design设计规范,采用QSS样式表实现视觉定制化。通过信号槽机制实现前后端数据双向绑定,运用多线程处理技术保障界面响应流畅度。数据验证机制包含前端格式校验与后端业务规则双重保障,关键操作均设有二次确认流程。 该系统适用于中小型图书管理场景,通过可扩展的插件架构支持功能模块的灵活组合。开发过程中特别注重代码的可维护性,采用面向对象编程范式实现高内聚低耦合的组件设计,为后续功能迭代奠定技术基础。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值