基于stm32的超声波测距HC-SR04

该文详细介绍了使用STM32F103C8T6微控制器,通过CubeMX配置RCC、GPIO、串口和定时器,结合Keil5编写代码,实现HC-SR04超声波测距模块的测量功能。主要涉及了高电平时间计算、距离转换以及中断处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


一、软件准备

(1)编程平台:Keil5

(2)CubeMX

(3)fire tool(串口调试助手)

(4)flyMcu(烧录软件)

二、硬件准备

(1)HC-SR04超声波测距模块

(2)stm32f103c8t6

(3)USB-TTL模块

三、CubeMX配置

1.配置RCC,SYS,时钟配置

请添加图片描述

请添加图片描述
请添加图片描述

2.配置GPIO

请添加图片描述

3.配置串口1

请添加图片描述

4.配置定时器

请添加图片描述

5.开启定时器中断

请添加图片描述

6.设置路径、生成代码工程在这里插入图片描述

四、Keil5代码

在这里插入图片描述
创建SR04.c和SR04.h文件
SR04.h

#ifndef __SR04_H
#define __SR04_H
#include "main.h"
#include "tim.h"
#include "stdio.h"
 
#define TRIG_H  HAL_GPIO_WritePin(Trig_GPIO_Port,Trig_Pin,GPIO_PIN_SET)
#define TRIG_L  HAL_GPIO_WritePin(Trig_GPIO_Port,Trig_Pin,GPIO_PIN_RESET)
 
void delay_us(uint32_t us);
void SR04_GetData(void);
 
#endif

SR04.c

#include "SR04.h"
 
float distant;      //测量距离
uint32_t measure_Buf[3] = {0};   //存放定时器计数值的数组
uint8_t  measure_Cnt = 0;    //状态标志位
uint32_t high_time;   //超声波模块返回的高电平时间
 
 
//===============================================读取距离
void SR04_GetData(void)
{
switch (measure_Cnt){
	case 0:
         TRIG_H;
         delay_us(30);
         TRIG_L;
    
		measure_Cnt++;
		__HAL_TIM_SET_CAPTUREPOLARITY(&htim2, TIM_CHANNEL_1, TIM_INPUTCHANNELPOLARITY_RISING);
		HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1);	//启动输入捕获       或者: __HAL_TIM_ENABLE(&htim5);                                                                                    		
        break;
	case 3:
		high_time = measure_Buf[1]- measure_Buf[0];    //高电平时间
         printf("\r\n----高电平时间-%d-us----\r\n",high_time);							
		distant=(high_time*0.034)/2;  //单位cm
        printf("\r\n-检测距离为-%.2f-cm-\r\n",distant);          
		measure_Cnt = 0;  //清空标志位
        TIM2->CNT=0;     //清空计时器计数
		break;
				
	}
}
 
 
//===============================================us延时函数
    void delay_us(uint32_t us)//主频72M
{
    uint32_t delay = (HAL_RCC_GetHCLKFreq() / 4000000 * us);
    while (delay--)
	{
		;
	}
}
 
//===============================================中断回调函数
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)//
{
	
	if(TIM2 == htim->Instance)// 判断触发的中断的定时器为TIM2
	{
		switch(measure_Cnt){
			case 1:
				measure_Buf[0] = HAL_TIM_ReadCapturedValue(&htim2,TIM_CHANNEL_1);//获取当前的捕获值.
				__HAL_TIM_SET_CAPTUREPOLARITY(&htim2,TIM_CHANNEL_1,TIM_ICPOLARITY_FALLING);  //设置为下降沿捕获
				measure_Cnt++;                                            
				break;              
			case 2:
				measure_Buf[1] = HAL_TIM_ReadCapturedValue(&htim2,TIM_CHANNEL_1);//获取当前的捕获值.
				HAL_TIM_IC_Stop_IT(&htim2,TIM_CHANNEL_1); //停止捕获   或者: __HAL_TIM_DISABLE(&htim5);
				measure_Cnt++;  
                         
		}
	
	}
	
}
 

usrat.c代码添加

/* USER CODE BEGIN 0 */
#include "stdio.h"
/* USER CODE END 0 */
 
 
 
/* USER CODE BEGIN 1 */
/*********************************************************
*
*重定义 fputc 函数
*
*********************************************************/
int fputc(int ch,FILE *f)
{
	HAL_UART_Transmit (&huart1 ,(uint8_t *)&ch,1,HAL_MAX_DELAY );
	return ch;
}
/* USER CODE END 1 */

main函数

#include "SR04.h"
 
 
int main(void)
{
  /* USER CODE BEGIN 1 */
 
  /* USER CODE END 1 */
 
  /* MCU Configuration--------------------------------------------------------*/
 
  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();
 
  /* USER CODE BEGIN Init */
 
  /* USER CODE END Init */
 
  /* Configure the system clock */
  SystemClock_Config();
 
  /* USER CODE BEGIN SysInit */
 
  /* USER CODE END SysInit */
 
  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_TIM2_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */
 
  /* USER CODE END 2 */
 
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
      
      SR04_GetData(  );
      HAL_Delay(1500);
      
    /* USER CODE END WHILE */
 
    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */

请添加图片描述

摘要:超声波测距是一种典型的非接触测量方式,应用非常广泛。本文提出了一种基于STM32单片机的高精度超声波测距方案。与传统单片机相比,STM32的主频和定时器的频率可以通过PLL倍频高达72MHz,高分辨率的定时器为高精度的测量提供了保证。超声波的发射使用定时器的PWM功能来驱动,回波信号的接收使用定时器的输入捕获功能,开始测距时,定时器的开启将同时启动PWM和输入捕获,完全消除了启动发射和启动计时之间的偏差,提高了测量精度。为使回波信号趋于稳定,设计了时间增益补偿电路(TGC),在等待回波的过程中随着时间的推移需要将放大器的增益值不断增大,通过实验获取不同距离需要设置的增益值,对应不同时间需要设置数字电位器的增量,并将该参数固化在单片机的FALSH中,在测距过程中,根据时间查询电位器增量表改变电位器阻值,实现回波信号的时间补偿,提高了测量的精度。为了在减小盲区的同时而不减小测量范围,设计了双比较器整形电路分别处理近、远距离的回波信号,近距离比较器可以有效屏蔽超声波衍射信号从而减小了测量盲区。传统的峰值检测方法大多通过硬件电路实现,设计较复杂,稳定性差。本文通过软件算法对回波信号进行峰值时间检测。不仅简化了电路,降低了成本,而且提高了系统的稳定度。经研究表明,该系统测量精度达到了lmm,盲区低至3cm,量程可达500cm。本系统在近距离测试时,系统的精度较理想,可作为停车时的倒车雷达使用,也可以用于液面检测(油箱液位),还可以用于自动门感应,机器人视觉识别等。如果多使用几个测距仪,将这些集成一个大系统,那么整个大系统可用于定位避障。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值