EverON High Availability Clustering

EverON 高可用集群提供不间断的数据服务,在多节点 ONStor NAS 系统中实现主动-主动集群配置,确保即使在单个或多个节点故障的情况下也能自动无缝接管数据服务。该解决方案利用标准 IP 网络进行跨校区集群部署,便于灾难恢复,并允许独立扩展性能与容量。
EverON High Availability Clustering

Continuous data availability and reliable performance are prerequisites for operating in today's business critical environments. EverON OS provides N-way high availability clustering capabilities to allow multiple ONStor NAS systems to be configured as an Active-Active cluster. EverON High Availability Clustering (EverON HA) allows administrators to scale performance and capacity independently while meeting stringent levels of uptime and availability.

  • Active-Active, multi-node clustering
  • Automated & transparent failover
  • Stretch cluster for campus wide clustering
  • Filer groups for selective failovers
  • Scale capacity and performance independently




  • Optimal hardware utilization with no requirements for standby hardware
  • Provides continuous data availability to end users and applications
  • Survive potential data center or building disasters in a campus
  • Match availability to application needs
  • Cost effective scaling while maintaining stringent levels of uptime

Continuous Data Availability

Under normal operation, each NAS system in the cluster provides data services to applications with EverON HA service monitoring the health of all NAS systems in the cluster. In the event of a failure of one or more ONStor NAS systems or if a NAS system is taken offline, EverON HA initiates a takeover operation of the data services of the failed NAS system(s). Takeover is automatic and transparent to end users and applications. The data services of the failed system are transferred non-disruptively to the remaining NAS systems in the cluster. During and after the takeover operation the data services on the other NAS systems in the cluster are never impacted.

Administrators take advantage of EverON HA capabilities to provide continuous data availability during periods of upgrades and maintenance. To upgrade one or more systems in a cluster, an administrator uses a rolling methodology wherein data services on each NAS system in the cluster are failed over with EverON HA at the beginning of an upgrade and are failed back after a successful upgrade.

EverON HA clustering offers customers the flexibility and choice of matching data services with requisite availability and uptime needs. Multiple ONStor NAS systems can be grouped together in filer groups to facilitate failover of data services between the systems in the group. In addition, EverON HA enables administrators to stretch a cluster by placing the NAS systems in different physical locations (data centers) in a campus to survive potential disasters to a data center or a building. EverON HA uses standard IP networking for the cluster interconnect network making it inexpensive to deploy campus wide clustering.

Scaling performance and capacity independently

ONStor Clustered NAS systems provide transactional guarantee of data persistence when applications write data to the system. EverON OS uses a complete write-through design for storage i/o. Data written to an ONStor NAS system are journaled on a stable storage pool before acknowledgement of data write is sent back to applications. This avoids the complexity of battery-backed NVRAM and having to mirror NVRAM between NAS systems in a cluster. Since transactional data is written to a stable storage pool and the pool is shared across all NAS systems in the cluster, the EverON HA cluster can scale to a large number of NAS systems. Today, customers can scale an EverON HA cluster to 8 ONStor NAS systems. The flexibility offered by EverON HA clustering enables customers to scale performance and capacity independently. To increase aggregate performance of the cluster, simply add new ONStor NAS systems to the cluster. Adding a NAS system to a cluster is non-disruptive and is automated by the EverON operating systems' non-stop cluster management framework.
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
先展示下效果 https://pan.quark.cn/s/a4b39357ea24 本项目是本人参加BAT等其他公司电话、现场面试之后总结出来的针对Java面试的知识点或真题,每个点或题目都是在面试中被问过的。 除开知识点,一定要准备好以下套路: 个人介绍,需要准备一个1分钟的介绍,包括学习经历、工作经历、项目经历、个人优势、一句话总结。 一定要自己背得滚瓜烂熟,张口就来 抽象概念,当面试官问你是如何理解多线程的时候,你要知道从定义、来源、实现、问题、优化、应用方面系统性地回答 项目强化,至少与知识点的比例是五五开,所以必须针对简历中的两个以上的项目,形成包括【架构和实现细节】,【正常流程和异常流程的处理】,【难点+坑+复盘优化】三位一体的组合拳 压力练习,面试的时候难免紧张,可能会严重影响发挥,通过平时多找机会参与交流分享,或找人做压力面试来善 表达练习,表达能力非常影响在面试中的表现,能否简练地将答案告诉面试官,可以通过给自己讲解的方式刻意练习 重点针对,面试官会针对简历提问,所以请针对简历上写的所有技术点进行重点准备 Java基础 JVM原理 集合 多线程 IO 问题排查 Web框架、数据库 Spring MySQL Redis 通用基础 操作系统 网络通信协议 排序算法 常用设计模式 从URL到看到网页的过程 分布式 CAP理论 锁 事务 消息队列 协调器 ID生成方式 一致性hash 限流 微服务 微服务介绍 服务发现 API网关 服务容错保护 服务配置中心 算法 数组-快速排序-第k大个数 数组-对撞指针-最大蓄水 数组-滑动窗口-最小连续子数组 数组-归并排序-合并有序数组 数组-顺时针打印矩形 数组-24点游戏 链表-链表反转-链表相加 链表-...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值