torch.Tensor - 一个多维数组
autograd.Variable - 改变Tensor并且记录下来操作的历史记录。和Tensor拥有相同的API,以及backward()的一些API。同时包含着和张量相关的梯度。
nn.Module - 神经网络模块。便捷的数据封装,能够将运算移往GPU,还包括一些输入输出的东西。
nn.Parameter - 一种变量,当将任何值赋予Module时自动注册为一个参数。
autograd.Function - 实现了使用自动求导方法的前馈和后馈的定义。每个Variable的操作都会生成至少一个独立的Function节点,与生成了Variable的函数相连之后记录下操作历史。
1、Tensors与numpy之间转换
# 此处演示tensor和numpy数据结构的相互转换
a = torch.ones(5)
b = a.numpy()
# 此处演示当修改numpy数组之后,与之相关联的tensor也会相应的被修改
a.add_(1)
print(a)
print(b)
# 将numpy的Array转换为torch的Tensor
import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
np.add(a, 1, out=a)
print(a)
print(b)
2、autograd.Variable 这是这个包中最核心的类。 它包装了一个Tensor,并且几乎支持所有的定义在其上的操作。一旦完成了你的运算,你可以调用 .backward()来自动计算出所有的梯度。
可以通过属性 .data 来访问原始的tensor,而关于这一Variable的梯度则集中于 .grad 属性中。
3、torch