【论文快读】DCGAN(2014)

标题:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS
作者:Alec Radford等
链接:https://arxiv.org/pdf/1511.06434.pdf
摘要:在这里插入图片描述

Intro

当时的CNN(LeNet、AlexNet等)主要用于监督学习,本文提出的DCGAN可以稳定训练,从而能够用于无监督学习。
本文的四个贡献:

  • 提出了可以稳定训练的DCGAN架构。
  • 使用了图像分类任务中的CNN作为判别器。
  • 对卷积核进行可视化。
  • 研究了生成器的一些性质。
相关工作
  1. 无监督学习:AE等。
  2. 图片生成模型:GAN、用于生成器的RNN和DeConvNet等。
  3. 可视化:ZF-Net
核心方法
  1. 使用stride conv代替最大池化的全卷积网络(the all convolutional net):分别在生成器和判别器中用于降采样和升采样。
  2. 取消全连接层,引入全局平均池化:增加了稳定性但是减慢收敛速度。
  3. Batch Normalization:能够使得学习过程更稳定,弥补初始化的无序性。

其它:

  • 生成器中的前层使用ReLU激活,输出使用Tanh。
  • 判别器使用LeakyReLU激活。

生成器架构:
在这里插入图片描述

反卷积

之前在ZF-Net和FCN中见过,这里简单写一写自己的理解。deconv的主要作用是升采样(另一种常用升采样的方法是双线性插值)。比如:
对于 a × a a\times a a×a的feature map进行 k × k k\times k k×k卷积,得到的feature map是 ( a − k + 1 ) × ( a − k + 1 ) (a-k+1)\times(a-k+1) (ak+1)×(ak+1),然后进行( k − 1 k-1 k1)填充,通过相同大小的反卷积核之后会得到原始的 a × a a\times a a×a特征。
很著名的那个动图介绍了deconv前后的形状变换,很简单,就不贴了。详细的矩阵计算见 https://blog.youkuaiyun.com/qq_37791134/article/details/84547562

每一个batch的训练过程

每一个batch内分别对判别器具D和生成器G做一次后向传播。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值