一、General
1. Concept
| DM / Dimensional Modeling / 维度模型 |
The process and outcome of designing logical database schemas created to support OLAP and data warehousing solutions. |
| Dimensional data structure |
Target of the ETL, include Fact tables, Dimension tables, Surrogate key mapping tables. |
| Dimension / 维 |
Descriptive attributes, for query constraining and labeling, e.g.CCY, region, customer, date, gender. Dimension table 描述fact的数据,denormalized flat tables, seldom changed data. |
| Fact / 事实 |
Business measures. Measures are derived from the records in the fact table and dimensions are derived from the dimension tables. |
| Metadata 元数据 |
All the information in the data warehouse that is not the actual data itself. |
| grain / granularity / hierarchy / 粒度 |
细粒度如存取记录数,粗粒度如资产、负债 |
E.g.
2. Flow
Identify reporting grain;
Identify dimensions that apply to each facttable;
Identify measures that will populate thefact tables;
二、Dimension
1. 模型

本文详细介绍了维度建模,包括概念、维度表的特征、主要分类如一致化维度、垃圾维度、角色扮演维度、退化维度和缓慢变化维度,并探讨了事实表的类型。此外,还提到了改变数据捕获(CDC)的方法以及设计建议,如将自由文本放入单独的维度表,尽量简化模型为星型结构。
最低0.47元/天 解锁文章
2118

被折叠的 条评论
为什么被折叠?



