大模型数据集自动化标注技术指南
一、自动化标注的核心方法
1. 弱监督学习 (Weak Supervision)
- 原理:使用启发式规则、模式匹配或知识图谱生成噪声标签
- 实现方式:
from snorkel.labeling import labeling_function from snorkel.labeling import PandasLFApplier # 定义标注规则 @labeling_function() def lf_contains_ai(x): return 1 if "artificial intelligence" in x.text.lower() else 0 @labeling_function() def lf_contains_ml(x): return 1 if "machine learning" in x.text.lower() else 0 # 应用规则 lfs = [lf_contains_ai, lf_contains_ml] applier = PandasLFApplier(lfs) L_train = applier.apply(df) # 标签聚合 from snorkel.labeling.model import LabelModel label_model = LabelModel(cardinality=2) label_model.fit(L_train) df["label"] = label_model.predict(L_train)
2. 预训练模型标注 (Pre-trained Model Labeling)
-
原理:使用现有大模型生成伪标签
-
实现流程:
from transformers import pipeline # 加载预训练模型 classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") # 自动标注 candidate_labels = ["technology", "politics", "sports", "entertainment"] def auto_label(text): result = classifier(text, candidate_labels) return result["labels"][0] # 返回最高置信度标签 df["label"] = df["text"].apply(auto_label)
3. 主动学习 (Active Learning)
- 原理:让模型选择最有价值的样本进行人工标注
- 代码实现:
from modAL.models import ActiveLearner from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import TfidfVectorizer # 初始少量标注数据 X_labeled = vectorizer.fit_transform(labeled_texts) y_labeled = labels # 未标注池 X_pool = vectorizer.transform(unlabeled_texts) # 创建主动学习器 learner = ActiveLearner( estimator=RandomForestClassifier(), X_training=X_labeled, y_training=y_labeled ) # 主动学习循环 n_queries = 100 for idx in

最低0.47元/天 解锁文章
1259

被折叠的 条评论
为什么被折叠?



