对数据集使用GLCM(灰度共生矩阵)进行纹理提取

对数据集使用GLCM(灰度共生矩阵)进行纹理提取

1.研究背景

图像的特征提取是图像的识别和分类、基于内容的图像检索、图像数据挖掘等研究内容的基础性工作,其中图像的纹理特征对描述图像内容具有重要意义,纹理特征提取己成为目前图像领域研究的热点。

图像的纹理特征描述图像景物的表面性质,是从图像中计算出的一个值,反应图像对应物品的质地,如粗糙度、颗粒度、随机性和规范性等。图像纹理常被应用于卫星遥感地表图像分析,图像分类、模式识别等。

GLCM 纹理提取方法具有较强的适应能力和稳健性,近年来已越来越多地用于图像的检测和分类。

2.方法原理

GLCM名为灰度共生矩阵,指的是一种通过研究灰度的空间相关特性来描述纹理的常用方法。假设原图的灰度级为L,那么灰度共生矩阵是L*L大小的计数矩阵。GLCM表其实就是所有像素可能的组合。

图示例子

灰度共生矩阵元素所表示的含义,以(1,1)点为例,GLCM(1,1)值为1说明左侧原图只有一对灰度为1的像素水平相邻。GLCM(1,2)值为2,是因为原图有两对灰度为1和2的像素水平相邻。
在这里插入图片描述:f(x,y),f(x+a,y+b)相邻,就是只有x相隔a的单位,y相隔b个单位,我们认为是相邻的。
a=1,b=0 时我们就说水平相邻:也就是0度的时候
a=1,b=1 时我们就说对角相邻,也就是45度的时候
a=-1,b=1 时 即135度……

因此对于灰度共生矩阵,需要确定以下几个参数:

  1. 灰度共生矩阵灰度级 :与灰度共生矩阵的阶数相同,即当灰度图像灰度级为N时,灰度共生矩阵为N × N的矩阵。一般一幅图的灰度级有256级,0-255,但由于计算量大,一般选取4、8、16作为灰度级。
  2. 滑动窗口尺寸:即每次计算特征值所选用的窗口矩阵大小,一般选取5或7。
  3. 方向选择:计算灰度共生矩阵的方向一般为0°,45°,90°,135°四个方向;求出四个方向矩阵的特征值后,可以通过计算四个特征值的平均值作为最终特征值共生矩阵。
  4. 步距d:一般选择d = 1,即中心像素直接与其相邻像素点做比较运算共生矩阵在精细纹理中随距离而快速变化,而在粗糙纹理中随距离则变化缓慢。一般而言,对于平滑纹理用较大的距离,对于粗糙纹理用较小的距离会取得较好的效果。

常用的glcm特征

对于纹理变换缓慢的图像,灰度共生矩阵对角线上的数值越大;图像纹理在局部变换较大,则偏离矩阵对角线的元素值较大。但是由于灰度共生矩阵的数据量较大,一般不直接作为区分纹理特征的依据。常用基于灰度共生矩阵计算出来的统计标量。信息熵、对比度、同质性(逆差距)、相关性、能量五个较常用的特征信息进行图像描述。

设f(x,y)为一幅二维数字图象,其大小为M×N,灰度级别为Ng,则满足一定空间关系的灰度共生矩阵为:
P(i,j)= #{(x1,y1),(x2,y2)∈M×N|f(x1,y1)=i,f(x2,y2)=j}

1.能量(ASM):ASM=∑i∑j(P(i,j))2

反映了图像灰度分布均匀程度和纹理粗细度。ASM值大表明一种较均一和规则变化的纹理模式。

2.对比度(Contrast):CON=∑i∑j(i−j)2P(i,j)

表现纹理的沟纹深,反差大,效果清晰。

3.同质性(Homogeneity):IDM=∑i∑j(P(i

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值