Given an integer n, generate all structurally unique BST’s (binary search trees) that store values 1…n.
For example,
Given n = 3, your program should return all 5 unique BST’s shown below.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
解题思路:
类似96. Unique Binary Search Trees的思路,二叉搜索树(BST)的建树原则如下:
以i为跟根节点的树,其左子树由[1,i-1]构成,右子树由[i+1, n]构成。
由于要输出BST序列,借鉴动态规划的做法,对从1~n的每个序列都进行建树:
1. 当子树的节点值比根节点值小的时候,该子树为空。
2. 递归建立左右子树,根节点连接左右子树。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<TreeNode*> generateTrees(int n) {
vector<TreeNode *> result;
if (n == 0) return result;
return generateTrees(1, n);
}
vector<TreeNode*> generateTrees(int start, int end) {
vector <TreeNode *> result;
if (start > end) {
result.push_back(nullptr);
return result;
}
for (int k = start; k <= end; k++) {
vector<TreeNode *> leftSubs = generateTrees(start, k - 1);
vector<TreeNode *> rightSubs = generateTrees(k + 1, end);
for (auto i : leftSubs) {
for (auto j : rightSubs) {
TreeNode *node = new TreeNode(k);
node->left = i;
node->right = j;
result.push_back(node);
}
}
}
return result;
}
};