神经网络建模:从自旋系统类比到记忆机制研究
1. 早期神经元与原子自旋的类比假设
Cragg和Temperley提出了一个有趣的假设,他们认为一组数量为M的神经元可以类比为一组数量同样为M的原子,每个原子具有 ± 1/2的自旋。神经元被视为具有两种状态,这两种状态由动作电位的存在(全部)或缺失(无)来区分,这可能与自旋为1/2的原子的两种独立状态相关,且不存在因其他因素导致的简并。
2. Griffith的质疑
2.1 对类比细节的批评
近十年后,Griffith对Cragg和Temperley的定性类比提出了尖锐批评。他指出,Cragg和Temperley没有详细定义与铁磁材料的关系,以至于人们无法确定在神经系统中宏观磁行为的类比是否真的成立。
2.2 状态转移过程分析
在状态转移过程的终端循环中,Griffith指出存在三种可能的情况:
- 具有概率分布p(So)的平衡状态。
- 两种二分状态,分别标识为S1 => + Su和Su => - SL,其统计情况由概率分布p(S1)和p(S2)描述。
2.3 神经与量子情况的差异
在计算终端循环中接近平衡状态的状态数量时,Griffith指出了神经和量子情况之间的根本差异。从量子力学的角度来看,两个状态s1和s2之间的状态转移概率(由于潜在的势垒势 <!>)在两个方向上是相等的,前提是 <!> 是厄米特的。然而,在神经动力学中,i2 = z(i1)和i1 = z(i2)的可能性非常小,即不存在微观可逆性。微观参数Pl,2只会自然地向p0移动,且后续函数z似乎没有
超级会员免费看
订阅专栏 解锁全文
869

被折叠的 条评论
为什么被折叠?



