J - Dungeon Master

J - Dungeon Master 
You are trapped in a 3D dungeon and need to find the quickest way out! The dungeon is composed of unit cubes which may or may not be filled with rock. It takes one minute to move one unit north, south, east, west, up or down. You cannot move diagonally and the maze is surrounded by solid rock on all sides.

Is an escape possible? If yes, how long will it take?
Input
The input consists of a number of dungeons. Each dungeon description starts with a line containing three integers L, R and C (all limited to 30 in size).
L is the number of levels making up the dungeon.
R and C are the number of rows and columns making up the plan of each level.
Then there will follow L blocks of R lines each containing C characters. Each character describes one cell of the dungeon. A cell full of rock is indicated by a '#' and empty cells are represented by a '.'. Your starting position is indicated by 'S' and the exit by the letter 'E'. There's a single blank line after each level. Input is terminated by three zeroes for L, R and C.
Output
Each maze generates one line of output. If it is possible to reach the exit, print a line of the form
Escaped in x minute(s).

where x is replaced by the shortest time it takes to escape.
If it is not possible to escape, print the line
Trapped!
Sample Input
3 4 5
S....
.###.
.##..
###.#

#####
#####
##.##
##...

#####
#####
#.###
####E

1 3 3
S##
#E#
###

0 0 0
Sample Output
Escaped in 11 minute(s)
.Trapped!

              
题意:在三维空间中求从‘S’到‘E’的最短距离,如果‘S’到不了‘E’ 输出‘Trapped!’;

思路:在 普通广搜中 加一个 方向。详见代码。

代码:
#include<queue>
#include<cstdio>
#include<string>
#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
#define mem(a,b) memset(a,0,sizeof(a))
char tu[35][35][35];
int ne[6][3]= {{0,0,1},{0,0,-1},{0,1,0},{0,-1,0},{1,0,0},{-1,0,0}};  //三维,加一个方向;
int book[35][35][35];  //标记是否走过;
int L,R,C,s_x,s_y,s_z,i,j,k;
struct zaq
{
    int x,y,z,step;
};
bool jud(int a,int b,int c)
{
    if(tu[a][b][c]!='#'&&a>=0&&b>=0&&c>=0&&a<L&&b<R&&c<C&&!book[a][b][c])
        return 1;
    return 0;
}
zaq now,nex;
queue<zaq>qaq;
int bfs()
{
    while(!qaq.empty())
        qaq.pop();
    now.x=s_x;
    now.y=s_y;
    now.z=s_z;
    now.step=0;
    qaq.push(now);
    book[now.x][now.y][now.z]=1;
    while(!qaq.empty())
    {
        now=qaq.front();
        qaq.pop();
        if(tu[now.x][now.y][now.z]=='E')
        {
            return now.step;
        }
        for(int i=0; i<6; i++)
        {
            nex.x=now.x+ne[i][0];
            nex.y=now.y+ne[i][1];
            nex.z=now.z+ne[i][2];
            if(jud(nex.x,nex.y,nex.z))
            {
                nex.step=now.step+1;
                qaq.push(nex);
                book[nex.x][nex.y][nex.z]=1;
            }
        }
    }
    return -1;
}
int main()
{
    while(~scanf("%d%d%d",&L,&R,&C)&&(L||R||C))
    {
        mem(book,0);
        for(i=0; i<L; i++)
        {
            for(j=0; j<R; j++)
            {
                scanf("%s",&tu[i][j]);
                for(k=0; k<C; k++)
                {
                    if(tu[i][j][k]=='S')
                    {
                        s_x=i;
                        s_y=j;       //存下‘S’所在位置;
                        s_z=k;
                    }
                }
            }
        }
       k=bfs();
        if(k==-1)
            printf("Trapped!\n");
        else
            printf("Escaped in %d minute(s).\n",k);
    }
    return 0;
}

基于STM32 F4的永磁同步电机无位置传感器控制策略研究内容概要:本文围绕基于STM32 F4的永磁同步电机(PMSM)无位置传感器控制策略展开研究,重点探讨在不依赖物理位置传感器的情况下,如何通过算法实现对电机转子位置和速度的精确估计与控制。文中结合嵌入式开发平台STM32 F4,采用如滑模观测器、扩展卡尔曼滤波或高频注入法等先进观测技术,实现对电机反电动势或磁链的估算,进而完成无传感器矢量控制(FOC)。同时,研究涵盖系统建模、控制算法设计、仿真验证(可能使用Simulink)以及在STM32硬件平台上的代码实现与调试,旨在提高电机控制系统的可靠性、降低成本并增强环境适应性。; 适合人群:具备一定电力电子、自动控制理论基础和嵌入式开发经验的电气工程、自动化及相关专业的研究生、科研人员及从事电机驱动开发的工程师。; 使用场景及目标:①掌握永磁同步电机无位置传感器控制的核心原理与实现方法;②学习如何在STM32平台上进行电机控制算法的移植与优化;③为开发高性能、低成本的电机驱动系统提供技术参考与实践指导。; 阅读建议:建议读者结合文中提到的控制理论、仿真模型与实际代码实现进行系统学习,有条件者应在实验平台上进行验证,重点关注观测器设计、参数整定及系统稳定性分析等关键环节。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值