C UVA 12293 Box Game

本文介绍了一个关于两个玩家轮流操作的游戏策略问题。游戏涉及两个装有不同数量球的盒子,玩家的目标是在对手无法继续进行有效操作的情况下赢得游戏。文章通过实例演示了如何找出获胜策略,并给出了一个规律性的解决方案。

 

There are two identical boxes. One of them contains n balls, while the other box contains one ball. Alice and Bob invented a game with the boxes and balls, which is played as follows: Alice and Bob moves alternatively, Alice moves first. For each move, the player finds out the box having fewer number of balls inside, and empties that box (the balls inside will be removed forever), and redistribute the balls in the other box. After the redistribution, each box should contain at least one ball. If a player cannot perform a valid move, he loses. A typical game is shown below:
When both boxes contain only one ball, Bob cannot do anything more, so Alice wins.
Question: if Alice and Bob are both clever enough, who will win? Suppose both of them are very smart and always follows a perfect strategy.
Input There will be at most 300 test cases. Each test case contains an integer n (2 ≤ n ≤ 109) in a single line. The input terminates by n = 0.
Output
For each test case, print a single line, the name of the winner.
Sample Input
2

3

4

0
Sample Output
Alice

Bob

Alice

 

 

题意:

有两个箱子,一个里面有n个球,一个里面有1个球。A(Alice)和B(Bob)做游戏。游戏规则:两者轮流操作,A先开始。首先把 里面球比较少的箱子倒空,再把另一个箱子里的球 分配到 两个箱子中,两个箱子中的球必须大于0. 最终不能操作的人输掉比赛。

 

思路:

找规律 ,见下表;(n*2)+1  是 B 赢,否则 A赢;

n值    赢的人

 

N值

赢的人
2A21A
3B22A
4A23A
5A24A
6A25A
7B26A
8A27A
9A28A
10A29A
11A30A
12A31B
13A32A
14A  
15B  
16A  
17A  
18A  
19A  
20A 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值