CF 300C - Beautiful Numbers [组合数求模]

本文介绍了两种解决特定组合数求和问题的方法:一种是通过预处理阶乘并使用逆元来计算;另一种则是利用递推公式进行计算。两种方法都需要处理大范围的输入,并在模意义下计算组合数。


数学是硬伤。

分析题目后知道就是求sigma(C[i,n]%mod)

1 ≤ n ≤ 106


下面有两种方法,

一、预处理出阶乘,直接根据组合数公式 C[i,n] = n!/( i!*(n-i)! ),由于涉及到除法取模,所以要求下逆元。

62ms.

#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<string>
#include<vector>
#include<map>
#include<algorithm>
using namespace std;
inline int Rint() { int x; scanf("%d", &x); return x; }
inline int max(int x, int y) { return (x>y)? x: y; }
inline int min(int x, int y) { return (x<y)? x: y; }
#define FOR(i, a, b) for(int i=(a); i<=(b); i++)
#define FORD(i,a,b) for(int i=(a);i>=(b);i--)
#define REP(x) for(int i=0; i<(x); i++)
typedef long long int64;
#define INF (1<<30)
const double eps = 1e-8;
#define bug(s) cout<<#s<<"="<<s<<" "

// a,b,n
// 1 ≤ a < b ≤ 9, 1 ≤ n ≤ 10^6
#define MAXN 1000000
#define MOD 1000000007

int a, b;
int64 fact[MAXN+2];

int isgood(int x) {
	for(; x; x/=10) {
		if(x%10 != a && x%10 != b) {
			return 0;
		}
	}
	return 1;
}
void calc_fact() {
	fact[0] = 1;
	FOR(i, 1, MAXN) {
		fact[i] = fact[i-1]*i%MOD;
	}
}

void ext_gcd(int64 a, int64 b, int64& d, int64& x, int64& y)
{
	if(!b) { d = a; x = 1; y = 0; }
	else { ext_gcd(b, a%b, d, y, x); y-=x*(a/b); }
}

int64 inv_mod(int64 a)	// ix=1(mod n)
{
	int64 x, y, d;
	ext_gcd(a, MOD, d, x, y);
	while(x<0) { x+=MOD; }
	return x;
}

int64 C(int k, int n) {
	return fact[n]*inv_mod(fact[k]*fact[n-k])%MOD;
}

int main() {
	a = Rint();
	b = Rint();
	int n = Rint();

	calc_fact();

	int64 ans = 0;
	FOR(i, 0, n) {
		if(isgood(a*i+b*(n-i))) {
			ans = (ans + C(i,n))%MOD;
		}
	}
	printf("%lld\n", ans);
}


二、根据递推公式 c[i]=c[i-1]*(n-i+1)/i ,先递推出所有C[n, i],因为这题n不会变,所以可以这样。同样要为 i 求逆元。

531ms

#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<string>
#include<vector>
#include<map>
#include<algorithm>
using namespace std;
inline int Rint() { int x; scanf("%d", &x); return x; }
inline int max(int x, int y) { return (x>y)? x: y; }
inline int min(int x, int y) { return (x<y)? x: y; }
#define FOR(i, a, b) for(int i=(a); i<=(b); i++)
#define FORD(i,a,b) for(int i=(a);i>=(b);i--)
#define REP(x) for(int i=0; i<(x); i++)
typedef long long int64;
#define INF (1<<30)
const double eps = 1e-8;
#define bug(s) cout<<#s<<"="<<s<<" "

// a,b,n
// 1 ≤ a < b ≤ 9, 1 ≤ n ≤ 10^6
#define MAXN 1000000
#define MOD 1000000007

int a, b;

int isgood(int x) {
	for(; x; x/=10) {
		if(x%10 != a && x%10 != b) {
			return 0;
		}
	}
	return 1;
}

void ext_gcd(int64 a, int64 b, int64& d, int64& x, int64& y)
{
	if(!b) { d = a; x = 1; y = 0; }
	else { ext_gcd(b, a%b, d, y, x); y-=x*(a/b); }
}

int64 inv_mod(int64 a)	// ix=1(mod n)
{
	int64 x, y, d;
	ext_gcd(a, MOD, d, x, y);
	while(x<0) { x+=MOD; }
	return x;
}

// int64 C(int k, int n) {
// 	return fact[n]*inv_mod(fact[k]*fact[n-k])%MOD;
// }

// #define MAXN 10000002
int64 c[MAXN+2];

int64 C(int64 n, int64 k)		//C n k			
{
	c[0] = 1;
	for(int64 i=1; i<=k; i++)
	{
		c[i] = c[i-1]*(n-i+1)%MOD*inv_mod(i) % MOD;
	}
	return c[k];
}

int main() {
	a = Rint();
	b = Rint();
	int n = Rint();

	// calc_fact();

	C(n, n);

	int64 ans = 0;
	FOR(i, 0, n) {
		if(isgood(a*i+b*(n-i))) {
			ans = (ans + c[i])%MOD;
		}
	}
	printf("%lld\n", ans);
}


另,感觉我的求逆元的代码是不是挫了点,好像以前写组合数学的题跑的时间都比别人久。。

数学推理现在完全记不起来了。。还有什么Lucas也不会。。T-T

响应动态冰蓄冷系统与需响应策略的优化研究(Matlab代码实现)内容概要:本文围绕“需响应动态冰蓄冷系统与需响应策略的优化研究”展开,基于Matlab代码实现,重点探讨了冰蓄冷系统在电力需响应背景下的动态建与优化调度策略。研究结合实际电力负荷与电价信号,构建系统能耗型,利用优化算法对冰蓄冷系统的运行策略进行解,旨在降低用电成本、平衡电网负荷,并提升能源利用效率。文中还提及该研究为博士论文复现,涉及系统建、优化算法应用与仿真验证等关键技术环节,配套提供了完整的Matlab代码资源。; 适合人群:具备一定电力系统、能源管理或优化算法基础,从事科研或工程应用的研究生、高校教师及企业研发人员,尤其适合开展需响应、综合能源系统优化等相关课题研究的人员。; 使用场景及目标:①复现博士论文中的冰蓄冷系统需响应优化型;②学习Matlab在能源系统建与优化中的具体实现方法;③掌握需响应策略的设计思路与仿真验证流程,服务于科研项目、论文写作或实际工程方案设计。; 阅读建议:建议结合提供的Matlab代码逐块分析,重点关注系统建逻辑与优化算法的实现细节,按文档目录顺序系统学习,并尝试调整参数进行仿真对比,以深入理解不同需响应策略的效果差异。
综合能源系统零碳优化调度研究(Matlab代码实现)内容概要:本文围绕“综合能源系统零碳优化调度研究”,提供了基于Matlab代码实现的完整解决方案,重点探讨了在高比例可再生能源接入背景下,如何通过优化调度实现零碳排放目标。文中涉及多种先进优化算法(如改进遗传算法、粒子群优化、ADMM等)在综合能源系统中的应用,涵盖风光场景生成、储能配置、需响应、微电网协同调度等多个关键技术环节,并结合具体案例(如压缩空气储能、光热电站、P2G技术等)进行建与仿真分析,展示了从问题建、算法设计到结果验证的全流程实现过程。; 适合人群:具备一定电力系统、能源系统或优化理论基础,熟悉Matlab/Simulink编程,从事新能源、智能电网、综合能源系统等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①开展综合能源系统低碳/零碳调度的科研建与算法开发;②复现高水平期刊(如SCI/EI)论文中的优化型与仿真结果;③学习如何将智能优化算法(如遗传算法、灰狼优化、ADMM等)应用于实际能源系统调度问题;④掌握Matlab在能源系统仿真与优化中的典型应用方法。; 阅读建议:建议结合文中提供的Matlab代码与网盘资源,边学习理论型边动手调试程序,重点关注不同优化算法在调度型中的实现细节与参数设置,同时可扩展应用于自身研究课题中,提升科研效率与型精度。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值