UVa-10590-Boxes of Chocolates Again

本文通过动态规划解决了一个有趣的问题:如何计算出从无限数量的不同类型巧克力盒子中取出指定数量巧克力的所有可能组合方式。该问题涉及到高精度计算,并提供了一个完整的C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem B

Boxes of Chocolates Again

Time Limit

4 Seconds

 

Little Pippy has got again a big bunch of boxes of chocolates on her 7th birthday. Her parents are anxious about the health of her teeth, so they have allowed her to take only a limited number of chocolates; lets call this number N. They know that Pippy always shares her belongings with her friends, so they have fixed a sufficiently large number to make sure that all are happy. The chocolates are packed in several types of boxes. Each type of box contains a certain number of chocolates which is written above the box. Boxes of different types contain different numbers of chocolates. If a box contains k chocolate(s) we will call it type-k box. Now Pippy should take exactly N chocolates without tearing apart any box. Your job is to determine in how many ways Pippy can do this. You may assume that there are infinitely many boxes of each type fromtype-1 to type-N.

 

For example, lets assume that Pippy has been asked to take 3 chocolates. She can take only one type-3 box or she can take one type-2 box and one type-1 box or she can take 3 type-1 boxes.

 

Input

There will be several lines as input each containing a candidate N as described above. N can be any nonnegative number less than or equal to5000. It may look like that N is very big for a little 7 year old girl; but remember she has lots of friends. And, who knows, may be you are one of her friends!

 

Output

For each N, print an integer on a single line indicating the number of ways Pippy can take N chocolates.

 

Sample Input

Output for Sample Input

3

4

5

3

5

7

 

Problemsetter: Tanveer Ahsan

International Islamic University Chittagong


分析:DP

5=1+1+1+1+1

5=1+1+1+2

5=1+2+2

5=1+1+3

5=2+3

5=1+4

5=5

现在从小到大排序拆分的数。

用dp[i][j]表示将i拆成若干个数字,最大的那个数字(即最后一个数)不超过j的方案数。

So:dp[i][j] = dp[i][j-1] + dp[i-j][j]

最后的dp[N][N]即为答案。时间复杂度O(N^2)。

PS:Need高精度!

感觉复杂度略高!寻求更精简的方法~

//UVa-10590-Boxes of Chocolates Again——DP + 高精度
#include<iostream>
#include<string>
using namespace std;

class BigInt
{
public:
	int a[1000];
	int len;
	void print();
	BigInt()
	{
		len = 0;
		memset(a, 0, sizeof(a));
	}
	BigInt operator + (BigInt &b) const;
};

void BigInt::print()
{
	int tag = 1;
	if(len == 0) printf("0");
	else
	{
		for(int i=len-1;i>=0;i--)
		{
			if(tag) printf("%d",a[i]);
			else printf("%.9d",a[i]);
			tag = 0;
		}
	}
}

BigInt BigInt::operator + (BigInt &b) const
{
	int max = len>b.len ? len : b.len;
	BigInt c; // c = a + b
	int carry = 0; // 进位
	for(int i=0;i<max+1;i++)
	{
		long long sum = a[i]+b.a[i]+carry;
		carry = 0;
		if(sum < 1000000000) c.a[i] = sum;
		else 
		{
			c.a[i] = sum % 1000000000;
			carry = sum / 1000000000;
		}
	}
	int j = max+2;
	while(j--)
	{
		if(c.a[j] != 0) break;
	}
	c.len = j+1;
	return c;
}

BigInt dp[5010];

int main()
{
	int n;
	dp[0].a[0] = 1;
	dp[0].len = 1;
	for(int i=1;i<=1000;i++) // 5000太慢了...
		for(int j=i;j<=1000;j++)
			dp[j] = dp[j] + dp[j-i];
	while(scanf("%d",&n) != EOF)
	{
		dp[n].print();
		printf("\n");
	}

	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值