uestc 1720 square-free integer(无平方因子数)&nyoj 580square-free integer(容斥,数论)

博客介绍了无平方因子数的概念,即一个数不能被任何素数的平方整除。例如,3, 5, 7 和 15 是无平方因子数,而 20 不是。文章探讨了如何使用素数表和容斥原理,通过递归方法来求解无平方因子数。" 114373633,5736399,Android Jetpack实战:Room数据库全面解析,"['数据库', 'android', 'kotlin', 'android studio', 'github']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

无平方因子数即对于任意一个素数p,p^2都不会整除那个数,如,3,5,7,15=3*5都是无平方因子数,而20=4*5=2^2*5不是!

先找素数,然后用容斥原理,递归求解

描述

In mathematics, a square-free integer is one divisible by no perfect square, expect 1.Such as 10,but 12 is not because 12=4×3.

So the problem is very simple, give you an interval [n,m],can should calculate how many square-free numbers in this interval?

输入
Each line will consist of two integers n,m(0<n<=m<10^9),end by EOF.
输出
Out put each answer in one line.
样例输入
1 10
10 20
样例输出
7
7
java代码nyoj 580:

 
import java.util.Scanner;
public class Main {
	static int size=(int)Math.sqrt(999999999);
	static int prime[]=new int[size+10];
	static boolean flag[]=new boolean[size+10];
	static int count=0;
	public static void prim()
	{
		for(int i=2;i<=size;i++)
		{
			if(!flag[i])
			{
				prime[count++]=i;
				for(int j=2*i;j<=size;j+=i)
				{
					flag[j]=true;
				}
			}
		}
	}
	
	//容斥原理
	public static int dfs(int index,int num)
	{
		int sum=0;
		for(int i=index;i<count&&(prime[i]*prime[i])<=num;i++)
		{
			sum+=num/prime[i]/prime[i]-dfs(i+1, num/prime[i]/prime[i]);
		}
		return sum;
	}
	public static void main(String[] args) {
		prim();
		Scanner scanner=new Scanner(System.in);
		while(scanner.hasNext())
		{
			int n=scanner.nextInt();
			int m=scanner.nextInt();
			System.out.println(((m-dfs(0, m))-(n-dfs(0, n)))+1);
		}

	}

}
        
uestc  ac代码:

#include<stdio.h>
#define  size 1000005
int prime[size];
bool flag[size];
int count=0;
	 void prim()
	{
		for(int i=2;i<=size;i++)
		{
			if(!flag[i])
			{
				prime[count++]=i;
				for(int j=2;j*i<size;j++)
				{
					flag[j*i]=1;
				}
			}
		}
	}
	
	//容斥原理
	long long int dfs(int index,long long int num)
	{
		long long int sum=0;
		for(int i=index;i<count&&(long long int)prime[i]*prime[i]<=num;i++)
		{
			sum+=num/prime[i]/prime[i]-dfs(i+1, num/prime[i]/prime[i]);
		}
		return sum;
	}
int main()
{
	int cases;
	prim();
	scanf("%d",&cases);
	while(cases--)
	{
        long long int n;
		scanf("%lld",&n);
		printf("%lld\n",n-dfs(0,n));
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值