leetcode Single Number II

探讨了如何在数组中找到仅出现一次的元素,而其他元素都恰好出现三次的问题。算法采用位操作来实现线性时间复杂度,并且不使用额外内存。通过对比不同实现方式,最终给出了一种清晰易懂的解决方案。

Single Number II

  Total Accepted: 4273  Total Submissions: 14218 My Submissions

Given an array of integers, every element appears three times except for one. Find that single one.

Note:
Your algorithm should have a linear runtime complexity. Could you implement it without using extra memory?


Similar to I, when the number accumulates for three times, set the bit to 0. I.e., how to simulate a ternary system using a binary system. 

I wrote an wrong code like :

class Solution {
 public:
  int singleNumber(int A[], int n) {
    int ones = 0, twos = 0, threes = 0, i, res = 0;
    if (n == 1)
      return A[0];
    for (i = 0; i < n; ++i) {
      res |= A[i];
      threes = twos & A[i];
      res ^= threes;
      
      twos = (twos | (ones & A[i])) ^ threes;
      ones = ones ^ A[i];
    }
    return res;
  }
};

The mistake is that the variable ones needs to be cleared based on the variable threes. At the same time, the variable res seems redundant. A right code is :

class Solution {
 public:
  int singleNumber(int A[], int n) {
    int ones = 0, twos = 0, threes = 0, i, res = 0;
    if (n == 1)
      return A[0];
    for (i = 0; i < n; ++i) {
      //res |= A[i];
      threes = twos & A[i];
      //res ^= threes;
      
      twos = (twos | (ones & A[i])) & (~threes);
      ones = (ones ^ A[i]) & (~threes);
    }
    return ones;
  }
};
However, the code seems not in a standard way. I tried to fix the code in an accessible code:

class Solution {
 public:
  int singleNumber(int A[], int n) {
    int ones = 0, twos = 0, threes = 0, mask = -1, i, res = 0;
    if (n == 1)
      return A[0];
    for (i = 0; i < n; ++i) {
      //res |= A[i];
      threes = twos & A[i];
      //res ^= threes;
      mask = (~threes);
      twos = (twos | (ones & A[i])) & mask;
      mask &= (~twos);
      ones = (ones | A[i] ) & mask;
    }
    return ones;
  }
};

At last, the problem could be changed like this:

Given an array of integers, every element appears m times except for one for n times. Find that the one of n times.

  int findNumber(int A[], int size, int m, int n) {
    int mask = -1, i, j;
	vector<int> times(m+1,0);
	
	for (i = 0; i < size; ++i) {
	  mask = times[0] = -1;
	  times[m] = 0;
	  for (j = m; j >= 1; --j) {
	    times[j] = (times[j] | (times[j-1] & A[i])) & mask;
		mask &= (~times[j]);
	  }
	}
	return times[n];
  }



【最优潮流】直流最优潮流(OPF)课设(Matlab代码实现)内容概要:本文档主要围绕“直流最优潮流(OPF)课设”的Matlab代码实现展开,属于电力系统优化领域的教学与科研实践内容。文档介绍了通过Matlab进行电力系统最优潮流计算的基本原理与编程实现方法,重点聚焦于直流最优潮流模型的构建与求解过程,适用于课程设计或科研入门实践。文中提及使用YALMIP等优化工具包进行建模,并提供了相关资源下载链接,便于读者复现与学习。此外,文档还列举了大量与电力系统、智能优化算法、机器学习、路径规划等相关的Matlab仿真案例,体现出其服务于科研仿真辅导的综合性平台性质。; 适合人群:电气工程、自动化、电力系统及相关专业的本科生、研究生,以及从事电力系统优化、智能算法应用研究的科研人员。; 使用场景及目标:①掌握直流最优潮流的基本原理与Matlab实现方法;②完成课程设计或科研项目中的电力系统优化任务;③借助提供的丰富案例资源,拓展在智能优化、状态估计、微电网调度等方向的研究思路与技术手段。; 阅读建议:建议读者结合文档中提供的网盘资源,下载完整代码与工具包,边学习理论边动手实践。重点关注YALMIP工具的使用方法,并通过复现文中提到的多个案例,加深对电力系统优化问题建模与求解的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值