Java锁机制之CAS(一)

本文深入解析了CAS(compareandswap)机制,一种在多线程环境中实现同步的重要手段。介绍了CAS的操作原理,包括其三个关键参数:内存位置、预期数值和新值。文章还探讨了Java中CAS的实现方式,以及处理器如何通过锁定总线或缓存来确保数据的一致性和并发控制。

导语

CAS 全称是 compare and swap,是一种用于在多线程环境下实现同步功能的机制。CAS 操作包含三个操作数:内存位置、预期数值和新值。CAS的实现逻辑是将内存位置处的数值与预期数值想比较,若相等,则将内存位置处的值替换为新值。若不相等,则不做任何操作。

简介

在 Java 中,Java 并没有直接实现 CAS,CAS 相关的实现是通过 C++ 内联汇编的形式实现的。Java 代码需通过 JNI 才能调用。接下来将会再介绍一点其他的背景知识。有这些背景知识,才能更好的理解后续的内容。

背景介绍

我们都知道,CPU 是通过总线和内存进行数据传输的。在多核心时代下,多个核心通过同一条总线和内存以及其他硬件进行通信。如下图:
在这里插入图片描述

图片出处:《深入理解计算机系统》

上图是一个较为简单的计算机结构图,虽然简单,但足以说明问题。在上图中,CPU 通过两个蓝色箭头标注的总线与内存进行通信。大家考虑一个问题,CPU 的多个核心同时对同一片内存进行操作,若不加以控制,会导致什么样的错误?

不过我们不用担心这个问题,在 Intel 处理器中,有两种方式保证处理器的某个核心独占某片内存区域。第一种方式是通过锁定总线,让某个核心独占使用总线,但这样代价太大。总线被锁定后,其他核心就不能访问内存了,可能会导致其他核心短时内停止工作。第二种方式是锁定缓存,若某处内存数据被缓存在处理器缓存中。处理器发出的 LOCK# 信号不会锁定总线,而是锁定缓存行对应的内存区域。其他处理器在这片内存区域锁定期间,无法对这片内存区域进行相关操作。相对于锁定总线,锁定缓存的代价明显比较小。

在这里插入图片描述
扫码关注了解更多

该协议用于C/S模型,是个基于文本的协议,用于在客户端和服务器端建立和协商实时流会话。   实时流协议(RTSP)是应用级协议,控制实时数据的发送。RTSP提供了个可扩展框架,使实时数据,如音频与视频,的受控、点播成为可能。数据源包括现场数据与存储在剪辑中数据。该协议目的在于控制多个数据发送连接,为选择发送通道,如UDP、组播UDP与TCP,提供途径,并为选择基于RTP上发送机制提供方法。   实时流协议(RTSP)建立并控制个或几个时间同步的连续流媒体。尽管连续媒体流与控制流交换是可能的,通常它本身并不发送连续流。换言之,RTSP充当多媒体服务器的网络远程控制。RTSP连接没有绑定到传输层连接,如TCP。在RTSP连接期间,RTSP用户可打开或关闭多个对服务器的可传输连接以发出RTSP请求。此外,可使用无连接传输协议,如UDP。RTSP流控制的流可能用到RTP,但RTSP操作并不依赖用于携带连续媒体的传输机制。   协议支持的操作如下:   (1)从媒体服务器上检索媒体:用户可通过HTTP或其它方法提交个演示描述。如演示是组播,演示式就包含用于连续媒体的的组播地址和端口。如演示仅通过单播发送给用户,用户为了安全应提供目的地址。   (2)媒体服务器邀请进入会议:媒体服务器可被邀请参加正进行的会议,或回放媒体,或记录其中部分,或全部。这种模式在分布式教育应用上很有用,会议中几方可轮流按远程控制按钮。   (3)将媒体加到现成讲座中:如服务器告诉用户可获得附加媒体内容,对现场讲座显得尤其有用。如HTTP/1.1中类似,RTSP请求可由代理、通道与缓存处理
<think>首先,用户的问题是:“我想了解Java锁机制的相关信息 请问Java锁机制介绍”。所以,我需要提供个清晰的解释Java锁机制的介绍。 从系统级指令: - 所有行内数学表达式必须使用$...$格式。但在这个上下文中,Java锁机制是关于编程的,可能没有数学表达式。如果有变量或概念,我需要处理。例如,提到CAS时,可能有数学概念,但可能不需要数学格式。指令说“包括变量、不等式、方程等”,但在Java锁机制中,常见的是变量如锁对象或线程概念。如果需要,我可以使用$...$,但尽量不要过度应用。 - 独立公式使用$$...$$并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题:在回答末尾生成相关问题,用§§相关问题§§分隔。 - 回答中引用的段落末尾自然地添加引用标识,例如[^1]。引用来自用户提供的引用:[^1], [^2], [^3], [^4]。这些引用是关于Java锁机制的,所以我应该在回答中提到这些概念时引用它们。 用户提供的引用: - [^1]: 提到锁的分类:公平锁/非公平锁等。 - [^2]: 详细目录结构,涉及锁的分类、ReentrantReadWriteLock、synchronized等。 - [^3]: 关于可重入锁的例子。 - [^4]: 解释可重入锁的定义和优点。 我的回答需要引用这些内容,自然地添加引用标识。 回答结构: - 结构清晰,帮助用户逐步解决问题。 - 尽量保证真实可靠。 - 使用中文。 主题:Java锁机制介绍。 核心内容包括: - 锁的基本概念:锁是用于线程同步的机制,防止多个线程同时访问共享资源。 - 分类:参考引用,列出常见的锁类型: - 公平锁 vs 非公平锁 - 可重入锁 vs 不可重入锁 - 独占锁 vs 共享锁 - 互斥锁 vs 读写锁 - 乐观锁 vs 悲观锁 - 分段锁 - 偏向锁/轻量级锁/重量级锁 - 自旋锁 - Java中的具体实现:如synchronized关键字、ReentrantLock类等。 - 锁的升级和优化:如从偏向锁到重量级锁的升级。 - 优点和用例:避免死锁、提高性能。 逐步介绍: 1. 引言:什么是Java锁机制?它是用于多线程编程中确保线程安全的工具。 2. 锁的分类:简要介绍主要类别。 3. 详细解释关键锁类型,如可重入锁(参考[^4]),使用例子。 4. Java中的实现:介绍synchronized和ReentrantLock。 5. 锁的状态升级:偏向锁、轻量级锁、重量级锁(参考[^2])。 6. 总结锁的重要性。 生成相关问题:在回答结束后,添加相关问题部分,标记为§§相关问题§§。 引用添加:当提到具体概念时,自然地添加引用标识。例如: - “可重入锁允许同个线程多次获取同把锁,避免死锁”[^4]。 - 确保引用是自然的。 避免数学表达式除非必要。在Java锁机制中,可能涉及CAS操作,如果提到,可以写成$CAS$ if needed, but it's not mathematical. CAS是Compare and Swap,可以用$...$包裹变量。 回答结构: - 开头:介绍Java锁机制。 - 主体:分小节解释关键点。 - 结尾:总结。 - 然后相关问题。 确保回答真实可靠:基于提供的引用和般知识。 最终输出: - 用中文。 - 末尾有相关问题。 </think>以下是关于 Java 锁机制的详细介绍。Java 锁机制是多线程编程中用于实现线程同步的关键工具,它可以防止多个线程同时访问共享资源,从而避免数据不致和并发问题。锁机制并非 Java 独有,但 Java 提供了丰富的内置实现(如 `synchronized` 关键字和 `java.util.concurrent.locks` 包)。接下来,我将从基础概念、常见分类、Java 核心实现等方面逐步解释,帮助您全面理解。本文内容基于您提供的引用进行整理,确保真实可靠。 ### 1. Java 锁机制的基本概念 Java 锁机制主要用于解决多线程环境下的资源竞争问题。当多个线程访问共享数据时,锁可以确保只有个线程在特定时间内执行关键代码(临界区),从而实现线程安全。锁的核心作用是实现同步,防止并发错误如死锁或数据竞争。锁机制Java 中广泛应用于数据库操作、缓存管理等高并发场景[^1]。 ### 2. Java 锁的主要分类 Java 锁可以根据不同特性进行分类。以下是常见分类(基于引用内容整理),每个类别都有其适用场景: - **公平锁 vs 非公平锁**: - 公平锁:线程获取锁的顺序遵循先来先服务原则(FIFO),确保公平性,但可能导致性能开销。例如,`ReentrantLock` 可以通过构造函数设置为公平模式。 - 非公平锁:线程获取锁的顺序不保证公平性,可能导致线程“插队”,但通常性能更高(默认模式)。 - **可重入锁 vs 不可重入锁**: - 可重入锁:同个线程可以多次获取同把锁,而不会造成死锁。这在递归调用或嵌套方法中尤为重要。Java 中的 `synchronized` 和 `ReentrantLock` 都是可重入锁。例如,在方法调用链中,线程获取锁后进入内层方法会自动持有锁[^4]。 ```java public class Test { public void a() { ReentrantLock lock = new ReentrantLock(true); // 创建个公平的可重入锁 lock.lock(); // 第次获取锁 lock.lock(); // 第二次获取锁不会阻塞,因为可重入 // ... 执行代码 lock.unlock(); // 需要对应解锁 lock.unlock(); } } ``` - 不可重入锁:如果线程重复获取同把锁,会引发死锁,因为锁无法被再次获取。 - **独占锁(写锁) vs 共享锁(读锁)**: - 独占锁:仅允许个线程持有锁,用于写操作,防止其他线程读或写。例如,`ReentrantLock` 默认是独占锁。 - 共享锁:允许多个线程同时持有锁,用于读操作,提高并发性能。`ReentrantReadWriteLock` 实现了读写分离,读锁是共享的,写锁是独占的[^2]。 - **乐观锁 vs 悲观锁**: - 乐观锁:假设并发冲突较少,不使用锁,仅在提交时检测冲突(如使用 CAS 操作)。适合读多写少场景,例如 `java.util.concurrent.atomic` 包中的原子类。 - 悲观锁:假设并发冲突频繁,始终使用锁保护资源。例如 `synchronized` 关键字。 - **其他分类**: - **互斥锁 vs 读写锁**:互斥锁是独占锁的特例;读写锁结合了共享和独占特性(如 `ReentrantReadWriteLock`)。 - **分段锁**:将数据分成多个段,每个段独立加锁,减少锁竞争。例如 `ConcurrentHashMap` 的实现。 - **偏向锁/轻量级锁/重量级锁**:这是锁状态升级的过程(详见第 4 节)。 - **自旋锁**:线程在获取锁失败时,不立即阻塞,而是循环尝试(自旋),减少上下文切换开销。常用于短时操作[^2]。 ### 3. Java 中的核心锁实现 Java 提供了多种锁实现,主要分为两类: - **内置锁(synchronized)**:使用 `synchronized` 关键字实现,是种可重入的互斥锁。它自动管理锁状态升级(从偏向锁到重量级锁),简化编程但灵活性较低。 ```java public synchronized void method() { // 临界区代码 } ``` - **显式锁(java.util.concurrent.locks)**:通过 `Lock` 接口及其实现类提供更丰富的功能。 - `ReentrantLock`:可重入锁,支持公平性和不公平性设置,提供 `tryLock` 等高级方法。 - `ReentrantReadWriteLock`:实现读写分离,提高读操作的并发性。 - `StampedLock`(JDK 8+):邮戳锁,结合乐观锁机制,性能更高,适合读多写少场景[^2]。 - `Condition`:条件变量,允许线程在特定条件下等待或唤醒,常用于生产者-消费者模式。 ### 4. 锁的状态升级和优化 Java 锁(尤其是 `synchronized`)会根据线程竞争情况动态升级状态,以平衡性能和安全性: - **无锁**:初始状态,没有线程竞争。使用 CAS(Compare and Swap)操作实现原子更新(例如 $CAS(\text{expectedValue}, \text{newValue})$ 比较并交换变量)。 - **偏向锁**:当只有个线程访问时,锁被“偏向”该线程,减少开销。实现原理是标记线程 ID 在对象头中[^2][^4]。 - **轻量级锁**:当多个线程轻度竞争时,使用自旋等待。线程通过 CAS 尝试获取锁,避免阻塞。 - **重量级锁**:当竞争激烈时,锁升级为重量级锁,线程进入阻塞状态,依赖操作系统互斥量。这会增加开销但保证公平性。 锁升级的过程是不可逆的,旨在优化并发性能,避免不必要的系统调用[^2]。 ### 5. 锁机制的优势和注意事项 - **优势**:可重入锁能预防死锁(如递归调用),共享锁提升读取并发性,乐观锁减少锁争用。整体上,锁机制确保了线程安全和数据致性。 - **注意事项**: - 过度使用锁可能导致性能瓶颈或死锁(例如线程相互等待)。 - 优先选择高级锁(如 `StampedLock`)来优化性能。 - 使用工具如 `CountDownLatch` 或 `Semaphore` 辅助线程协调[^2]。 Java 锁机制是多线程编程的基石,理解其分类和实现可以帮助您设计高效的并发应用。建议通过实际代码(如上述示例)加深理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值