数据标准化处理方法

数据标准化是数据分析前的重要步骤,包括数据同趋化和无量纲化处理。常见的标准化方法有最小-最大标准化、Z-score标准化和小数定标标准化。这些方法使得数据在不同尺度上具有可比性,便于综合分析。例如,Min-max方法通过(原数据-极小值)/(极大值-极小值)进行转换,Z-score标准化利用(原数据-均值)/标准差,而小数定标标准化则根据数据的最大绝对值移动小数点。标准化参数需保存以便后续处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据标准化处理方法
    在数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行数据分析。数据标准化也就是统计数据的指数化。数据标准化处理主要包括数据同趋化处理和无量纲化处理两个方面。数据同趋化处理主要解决不同性质数据问题,对不同性质指标直接加总不能正确反映不同作用力的综合结果,须先考虑改变逆指标数据性质,使所有指标对测评方案的作用力同趋化,再加总才能得出正确结果。数据无量纲化处理主要解决数据的可比性。数据标准化的方法有很多种,常用的有“最小—最大标准化”、“Z-score标准化”和“按小数定标标准化”等。经过上述标准化处理,原始数据均转换为无量纲化指标测评值,即各指标值都处于同一个数量级别上,可以进行综合测评分析。
  一、Min-max 标准化
    min-max标准化方法是对原始数据进行线性变换。设minA和maxA分别为属性A的最小值和最大值,将A的一个原始值x通过min-max标准化映射成在区间[0,1]中的值x',其公式为:     新数据=(原数据-极小值)/(极大值-极小值)     二、z-score 标准化

 


               

 

 

 

    这种方法基于原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。将A的原始值x使用z-score标准化到x'。
    z-score标准化方法适用于属性A的最大值和最小值未知的情况,或有超出取值范围的离群数据的情况。     新数据=(原数据-均值)/标准差
    spss默认的标准化方法就是z-score标准化。
    用Excel进行z-score标准化的方法:在Excel中没有现成的函数,需要自己分步计算,其实标准化的公式很简单。 步骤如下:
    1.求出各变量(指标)的算术平均值(数学期望)xi和标准差si ;     2.进行标准化处理:       zij=(xij-xi)/si
      其中:zij为标准化后的变量值;xij为实际变量值。     3.将逆指标前的正负号对调。
    标准化后的变量值围绕0上下波动,大于0说明高于平均水平,小于0说明低于平均水平。
    三、Decimal scaling小数定标标准化

 

 

 

 

 


    这种方法通过移动数据的小数点位置来进行标准化。小数点移动多少位取决于属性A的取值中的最大绝对值。将属性A的原始值x使用decimal scaling标准化到x'的计算方法是:     x'=x/(10*j)
    其中,j是满足条件的最小整数。
    例如 假定A的值由-986到917,A的最大绝对

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值