Stitch Fix
A DS (Data-Science) driven online shopping model. Customers receives boxes and choose to keep or return the items inside.
Culture
这个在电商模式上有所创新的美国电商,给予了数据科学非常重要的位置。从组织架构上DS部门的定位不是为其他部门服务,而是提供business insight和innovation. 另外,团队并未像通常一样按照技术智能划分为算法、数据等等,而是按照业务场景或者研究方向来组成纵向团队,以避免团队间的合作成本,例如往往当算法人员需要数据支持时,数据人员正在忙别的project。
Organisation: DS department is not a service org for other department but a team providing insight and new ideas.
Roles: people are not divided to groups by tech functions but to vertical teams focus on some specific topic. This avoids time wasted on team interaction and communication.
Process: not pure top-down like others companies but using a bi-directional process: DS provides insights and innovations while receiving top down orders.
Algo overview
Check this :
https://algorithms-tour.stitchfix.com/
It’s amazing
Talk of YuanBo
Check this: https://www.bilibili.com/video/BV1eV411r7AP
Intelligent warehousing
主要谈到只能仓储中,AGV的路径规划以及货架的最优摆放问题。
Order fullfillment using shadow price info
Key:如何在进行履约路由分配时考虑到有限库存带来的缺货风险
Check this paper:
Making Better Fulfillment Decisions on the Fly in an Online Retail Environment
Forecast
Boosting 决策树仍然是霸主般的存在。
Censored demand for forecasting: 矩阵回填. 将通过矩阵分解和回填来处理历史demand数据,然后再用以进行预测,有明显的效果提升。
背后思想:数据生成:bootstrapping, data augmentation, GAN
Advices
Data Scientist:
- Type1: data insight, pb definition, communication
- Type2: engineering, model iteration
Try to cover both profiles.