【转载】Overview of gradient descent algorithms

本文深入探讨了各种流行的基于梯度的优化算法,如动量(Momentum)、AdaGrad、RMSprop和Adam的工作原理,旨在为这些常用于神经网络优化的算法提供直观的理解。

Overview of gradient descent algorithms

 

 

An overview of gradient descent optimization algorithms

Gradient descent is the preferred way to optimize neural networks and many other machine learning algorithms but is often used as a black box. This post explores how many of the most popular gradient-based optimization algorithms such as Momentum, Adagrad, and Adam actually work.

  • Sebastian Ruder

    Sebastian Ruder

    Read more posts by this author.

    Sebastian Ruder

SEBASTIAN RUDER

19 JAN 2016 • 28 MIN READ

 

This post explores how many of the most popular gradient-based optimization algorithms actually work.

Note: If you are looking for a review paper, this blog post is also available as an article on arXiv.

Update 20.03.2020: Added a note on recent optimizers.

Update 09.02.2018: Added AMSGrad.

Update 24.11.2017: Most of the content in this article is now also available as slides.

Update 15.06.2017: Added derivations of AdaMax and Nadam.

Update 21.06.16: This post was posted to Hacker News. The discussion provides some interesting pointers to related work and other techniques.

Table of contents:

Gradient descent is one of the most popular algorithms to perform optimization and by far the most common way to optimize neural networks. At the same time, every state-of-the-art Deep Learning library contains implementations of various algorithms to optimize gradient descent (e.g. lasagne'scaffe's, and keras' documentation). These algorithms, however, are often used as black-box optimizers, as practical explanations of their strengths and weaknesses are hard to come by.

This blog post aims at providing you with intuitions towards the behaviour of different algorithms for optimizing gradient descent that will help you put them to use. We are first going to look at the different variants of gradient descent. We will then briefly summarize challenges during training. Subsequently, we will introduce the most common optimization algorithms by showing their motivation to resolve these challenges and how this leads to the derivation of their update rules. We will also take a short look at algorithms and architectures to optimize gradient descent in a parallel and distributed setting. Finally, we will consider additional strategies that are helpful for optimizing gradient descent.

Gradient descent is a way to minimize an objective function J(θ)J(θ) parameterized by a model's parameters θ∈Rdθ∈Rd by updating the parameters in the opposite direction of the gradient of the objective function ∇θJ(θ)∇θJ(θ) w.r.t. to the parameters. The learning rate ηη determines the size of the steps we take to reach a (local) minimum. In other words, we follow the direction of the slope of the surface created by the objective function downhill until we reach a valley. If you are unfamiliar with gradient descent, you can find a good introduction on optimizing neural networks here.

请访问原文链接:Overview of gradient descent algorithms

内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)与多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习与启发因子优化,实现路径的动态调整与多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算与参数自适应机制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练与融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法与神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑与实时避障等多目标协同优化;③为智能无人系统的自主决策与环境适应能力提供算法支持; 阅读建议:此资源结合理论模型与MATLAB实践,建议读者在理解ACO与MLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
梯度下降优化算法概述 梯度下降是一种常用的优化方法,可以帮助我们找到使目标函数最小化或最大化的参数。随着机器学习和深度学习的发展,各种梯度下降算法也不断涌现。以下是一些常用的梯度下降优化算法的概述: 1. 批量梯度下降(Batch Gradient Descent):在每次迭代中,批量梯度下降使用所有样本的梯度来更新模型参数。适用于训练集较小、模型参数较少的情况。 2. 随机梯度下降(Stochastic Gradient Descent):在每次迭代中,随机梯度下降使用一个单独的样本来更新模型参数。适用于训练集较大、模型参数较多的情况。 3. 小批量梯度下降(Mini-batch Gradient Descent):小批量梯度下降是一种介于批量梯度下降和随机梯度下降之间的方法。它在每次迭代中使用一小部分样本的梯度来更新模型参数。适用于训练集规模较大的情况。 4. 动量(Momentum):动量算法加入了“惯性”的概念,可以加速梯度下降的收敛速度。在每次迭代中,动量算法使用上一次的梯度信息来更新模型参数。 5. 自适应梯度下降(Adaptive Gradient Descent):自适应梯度下降可以自适应地调整每个模型参数的学习率,以便更快地收敛到最优解。比如,Adagrad算法可以针对每个参数单独地调整学习率。 6. 自适应矩估计(Adaptive Moment Estimation):Adam算法是一种结合了Momentum和Adaptive Gradient Descent的算法。它可以自适应调整每个参数的学习率,并利用二阶矩来调整动量。 每种梯度下降算法都有其适用的场合,需要根据问题的性质来选择合适的算法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值