数据库

范式

1NF  原子性

2NF 满足第一范式,并且R中每一个非主属性完全函数依赖于R的某个候选键

3NF 满足第二范式,且每个非主属性都不传递依赖于R的候选键

BCNF 第三范式的基础上,数据库表中如果不存在任何字段对任一候选关键字段的传递函数依赖


索引

http://www.cnblogs.com/KissKnife/archive/2009/03/30/1425534.html            

聚集索引:在聚集索引中,叶结点也即数据结点,所有数据行的存储顺序与索引的存储顺序一致。

非聚集索引

非聚集索引与聚集索引相比:
       A)叶子结点并非数据结点
       B)叶子结点为每一真正的数据行存储一个“键-指针”对
       C)叶子结点中还存储了一个指针偏移量,根据页指针及指针偏移量可以定位到具体的数据行。
       D)类似的,在除叶结点外的其它索引结点,存储的也是类似的内容,只不过它是指向下一级的索引页的。

聚集索引是一种稀疏索引,数据页上一级的索引页存储的是页指针,而不是行指针。而对于非聚集索引,则是密集索引,在数据页的上一级索引页它为每一个数据行存储一条索引记录。

聚集索引和非聚集的区别

聚集索引和非聚集索引的根本区别是数据记录的排列顺序和索引的排列顺序是否一致,聚集索引表记录的排列顺序与索引的排列顺序一致,优点是查询速度快,因为一旦具有第一个索引值的纪录被找到,具有连续索引值的记录也一定物理的紧跟其后,从而缩小了搜索范围,对于返回某一范围的数据效果最好。

聚集索引的缺点是对表进行修改速度较慢,这是为了保持表中的记录的物理顺序与索引的顺序一致,而把记录插入到数据页的相应位置,必须在数据页中进行数据重排,降低了执行速度。
  非聚集索引指定了表中记录的逻辑顺序,数据记录的物理顺序和索引的顺序不一致,聚集索引和非聚集索引都采用了B树的结构,但非聚集索引的叶子层顺序并不与实际的数据页相同,而采用指向表中的记录在数据页中位置的方式。非聚集索引比聚集索引层次多,添加记录不会引起数据顺序的重组。在有大量不同数据的列上建立非聚集索引,可以提高数据的查询和修改速度。

在对聚集索引列查询时,聚集索引的速度要比非聚集索引速度快。

在对聚集索引列排序时,聚集索引的速度要比非聚集索引速度快。但是如果数据量比较大时,如10万以上,则二者的速度差别不明显。



【RIS 辅助的 THz 混合场波束斜视下的信道估计与定位】在混合场波束斜视效应下,利用太赫兹超大可重构智能表面感知用户信道与位置(Matlab代码实现)内容概要:本文围绕“IS 辅助的 THz 混合场波束斜视下的信道估计与定位”展开,重点研究在太赫兹(THz)通信系统中,由于混合近场与远场共存导致的波束斜视效应下,如何利用超大可重构智能表面(RIS)实现对用户信道状态信息和位置的联合感知与精确估计。文中提出了一种基于RIS调控的信道参数估计算法,通过优化RIS相移矩阵提升信道分辨率,并结合信号到达角(AoA)、到达时间(ToA)等信息实现高精度定位。该方法在Matlab平台上进行了仿真验证,复现了SCI一区论文的核心成果,展示了其在下一代高频通信系统中的应用潜力。; 适合人群:具备通信工程、信号处理或电子信息相关背景,熟悉Matlab仿真,从事太赫兹通信、智能反射面或无线定位方向研究的研究生、科研人员及工程师。; 使用场景及目标:① 理解太赫兹通信中混合场域波束斜视问题的成因与影响;② 掌握基于RIS的信道估计与用户定位联合实现的技术路径;③ 学习并复现高水平SCI论文中的算法设计与仿真方法,支撑学术研究或工程原型开发; 阅读建议:此资源以Matlab代码实现为核心,强调理论与实践结合,建议读者在理解波束成形、信道建模和参数估计算法的基础上,动手运行和调试代码,深入掌握RIS在高频通信感知一体化中的关键技术细节。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值