#include <iostream>
#include <fstream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <vector>
#include <stdio.h>
#include <time.h>
#include <math.h>
#include <string>
#define N 30 //城市数量
#define T 3000 //初始温度
#define EPS 1e-8 //终止温度
#define DELTA 0.98 //温度衰减率
#define OLOOP 1000 //外循环次数
using namespace std;
//定义路线结构体
struct Path
{
int citys[N];
double len;
};
//定义城市点坐标
struct Point
{
double x, y;
};
Path bestPath; //记录最优路径
double w[N][N]; //两两城市之间路径长度
int nCase; //测试次数
int sity_num;
vector<Point> P;//记录所有城市的地点
double dist(Point A, Point B)
{
return sqrt((A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y));
}
void GetDist()
{
for(int i = 0; i < sity_num; i++)
for(int j = i + 1; j < sity_num; j++)
w[i][j] = w[j][i] = dist(P[i], P[j]);
}
void Init()
{
nCase = 0;
bestPath.len = 0;
for(int i = 0; i < sity_num; i++)
{
bestPath.citys[i] = i;
if(i != sity_num - 1)
{
printf("%d--->", i);
bestPath.len += w[i][i + 1];
}
else
printf("%d\n", i);
}
printf("\nInit path length is : %.3lf\n", bestPath.len);
printf("-----------------------------------\n\n");
}
void Print(Path t, int n)
{
printf("Path is : ");
for(int i = 0; i < n; i++)
{
if(i != n - 1)
printf("%d-->", t.citys[i]);
else
printf("%d\n", t.citys[i]);
}
printf("\nThe path length is : %.3lf\n", t.len);
printf("-----------------------------------\n\n");
}
Path GetNext(Path p, int n)
{
Path ans = p;
int x = (int)(n * (rand() / (RAND_MAX + 1.0)));
int y = (int)(n * (rand() / (RAND_MAX + 1.0)));
while(x == y)
{
x = (int)(n * (rand() / (RAND_MAX + 1.0)));
y = (int)(n * (rand() / (RAND_MAX + 1.0)));
}
swap(ans.citys[x], ans.citys[y]);
ans.len = 0;
for(int i = 0; i < n - 1; i++)
ans.len += w[ans.citys[i]][ans.citys[i + 1]];
cout << "nCase = " << nCase << endl;
Print(ans, n);
nCase++;
return ans;
}
void SA()
{
double t = T;
srand((int)time(0) + rand());
Path curPath = bestPath;
Path newPath = bestPath;
for(int i = 0; i < OLOOP; i++) //内循环,寻找在一定温度下的最优值
{
newPath = GetNext(curPath, sity_num);
double dE = newPath.len -curPath.len;
if(dE < 0) //如果找到更优值,直接更新
{
curPath = newPath;
}
else
{
double rd = rand() / (RAND_MAX + 1.0);
//如果找到比当前更差的解,以一定概率接受该解,并且这个概率会越来越小
if(exp(-dE / t) > rd && exp(-dE / t) < 1)
curPath = newPath;
}
t *= DELTA;
if(t < EPS)
break;
if(curPath.len < bestPath.len)
bestPath = curPath;
}
}
void readFile(char dataFile[]){
ifstream input;
input.open(dataFile);
if (input.is_open()){
input >> sity_num ;
//initialize the vector
Point temp;
for(int i = 0; i < sity_num; i++){
P.push_back(temp);
}
for (int i = 0; i < sity_num; i++){
try{
input >> P[i].x;
input >> P[i].y;
}
catch(string &err){
cout << err <<endl;
}
}
}
else{
cout << "open file failed!" <<endl;
}
}
int main() {
char dataFile[100] = "TSP.txt";
readFile(dataFile);
GetDist();
Init();
SA();
Print(bestPath, sity_num);
printf("Total test times is : %d\n", nCase);
system("pause");
}
/*
TSP.txt
6
80 10
60 45
23 80
55 75
100 9
40 90
8*/
一. 爬山算法 ( Hill Climbing )
介绍模拟退火前,先介绍爬山算法。爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。
爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜索到全局最优解。如图1所示:假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不能得到更优的解。
图1
二. 模拟退火(SA,Simulated Annealing)思想
爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。以图1为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。
模拟退火算法描述:
若J( Y(i+1) )>= J( Y(i) ) (即移动后得到更优解),则总是接受该移动
若J( Y(i+1) )< J( Y(i) ) (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)
这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。
根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:
P(dE) = exp( dE/(kT) )
其中k是一个常数,exp表示自然指数,且dE<0。这条公式说白了就是:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(否则就不叫退火了),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。
随着温度T的降低,P(dE)会逐渐降低。
我们将一次向较差解的移动看做一次温度跳变过程,我们以概率P(dE)来接受这样的移动。
关于爬山算法与模拟退火,有一个有趣的比喻:
爬山算法:兔子朝着比现在高的地方跳去。它找到了不远处的最高山峰。但是这座山不一定是珠穆朗玛峰。这就是爬山算法,它不能保证局部最优值就是全局最优值。
模拟退火:兔子喝醉了。它随机地跳了很长时间。这期间,它可能走向高处,也可能踏入平地。但是,它渐渐清醒了并朝最高方向跳去。这就是模拟退火。
下面给出模拟退火的伪代码表示。
三. 模拟退火算法伪代码

* J(y):在状态y时的评价函数值
* Y(i):表示当前状态
* Y(i+1):表示新的状态
* r: 用于控制降温的快慢
* T: 系统的温度,系统初始应该要处于一个高温的状态
* T_min :温度的下限,若温度T达到T_min,则停止搜索
*/
while( T > T_min )
{
dE = J( Y(i+1) ) - J( Y(i) ) ;
if ( dE >=0 ) //表达移动后得到更优解,则总是接受移动
Y(i+1) = Y(i) ; //接受从Y(i)到Y(i+1)的移动
else
{
// 函数exp( dE/T )的取值范围是(0,1) ,dE/T越大,则exp( dE/T )也
if ( exp( dE/T ) > random( 0 , 1 ) )
Y(i+1) = Y(i) ; //接受从Y(i)到Y(i+1)的移动
}
T = r * T ; //降温退火 ,0<r<1 。r越大,降温越慢;r越小,降温越快
/*
* 若r过大,则搜索到全局最优解的可能会较高,但搜索的过程也就较长。若r过小,则搜索的过程会很快,但最终可能会达到一个局部最优值
*/
i ++ ;
}
四. 使用模拟退火算法解决旅行商问题
旅行商问题 ( TSP , Traveling Salesman Problem ) :有N个城市,要求从其中某个问题出发,唯一遍历所有城市,再回到出发的城市,求最短的路线。
旅行商问题属于所谓的NP完全问题,精确的解决TSP只能通过穷举所有的路径组合,其时间复杂度是O(N!) 。
使用模拟退火算法可以比较快的求出TSP的一条近似最优路径。(使用遗传算法也是可以的,我将在下一篇文章中介绍)模拟退火解决TSP的思路:
1. 产生一条新的遍历路径P(i+1),计算路径P(i+1)的长度L( P(i+1) )
2. 若L(P(i+1)) < L(P(i)),则接受P(i+1)为新的路径,否则以模拟退火的那个概率接受P(i+1) ,然后降温
3. 重复步骤1,2直到满足退出条件
产生新的遍历路径的方法有很多,下面列举其中3种:
1. 随机选择2个节点,交换路径中的这2个节点的顺序。
2. 随机选择2个节点,将路径中这2个节点间的节点顺序逆转。
3. 随机选择3个节点m,n,k,然后将节点m与n间的节点移位到节点k后面。