作者:Matthew Stewart, PhD Researcher
翻译:吴金笛
校对:丁楠雅
本文约4300字,建议阅读15分钟。
本文主要是向新手介绍贝叶斯方法并将其与频率方法进行比较。
你有没有问过自己,以前从未发生过的事件发生的概率是多少?
在本文中,我们将深入探讨贝叶斯统计的神秘世界以及它的一些原则,Bernstein-von Mises定理和Cromwell规则,以及用它们分析现实世界的机器学习问题。
“贝叶斯统计之所以困难,是因为思考是困难的”
- Don Berry
如果你想深入了解贝叶斯统计背后的数学原理,那么这篇文章不是你要找的(尽管未来我将发表关于这个的文章)。本文主要是给刚刚接触这个概念的人介绍贝叶斯方法。
想象一下,你正在设计一座核电站。你的任务是使用数据来确定工厂是否正常运转。这看起来似乎是一个相对简单的任务,直到你意识到你实际上没有任何关于核电站发生核泄露时的数据。你怎么能预测这样的事情呢?
如果你是一个精明的机器学习专家,你可能会提出某种无监督的方法,如(受限制的)波耳兹曼机,它能够了解“正常”的发电厂是什么样的,从而知道什么时候发生了错误(事实上,这是正人们预测核电厂正常运行情况的一种方式)。
然而,如果我们从更广泛的意义上考虑这个问题,当我们没有什么负面例子可以比较时,我们该怎么办?出现这种情况有几个原因:
低概率情景:该事件发生的概率如此之低,以至于在(有限的)样本数据中根本没有观察到该事件的发生。
数据稀疏情景:观察已经发生,但很少。
灾难情景:失败的结果将是灾难性的,它只能发生一次,例如,太阳的毁灭。
传统的统计方法不适用于这类问题,我们需要不同的方法。
一个更普遍的问题是,我们如何处理极低(但