Mysql加锁过程详解--03关于mysql幻读理解

深入探讨MySQL InnoDB如何通过next-key locks机制避免幻读现象,解释在可重复读隔离级别下,如何使用加锁读来确保数据的一致性和避免幻读。

转载自:http://www.cnblogs.com/crazylqy/p/7614092.html

Mysql加锁过程详解(2)-关于mysql 幻读理解出现了幻读,那么不是说mysql的重复读解决了幻读的么?

 

那么,InnoDB指出的可以避免幻读是怎么回事呢?

http://dev.mysql.com/doc/refman/5.0/en/innodb-record-level-locks.html

By default, InnoDB operates in REPEATABLE READ transaction isolation level and with the innodb_locks_unsafe_for_binlog system variable disabled. In this case, InnoDB uses next-key locks for searches and index scans, which prevents phantom rows (see Section 13.6.8.5, “Avoiding the Phantom Problem Using Next-Key Locking”).

准备的理解是,当隔离级别是可重复读,且禁用innodb_locks_unsafe_for_binlog的情况下,在搜索和扫描index的时候使用的next-key locks可以避免幻读。

关键点在于,是InnoDB默认对一个普通的查询也会加next-key locks,还是说需要应用自己来加锁呢?如果单看这一句,可能会以为InnoDB对普通的查询也加了锁,如果是,那和序列化(SERIALIZABLE)的区别又在哪里呢?

MySQL manual里还有一段:

13.2.8.5. Avoiding the Phantom Problem Using Next-Key Locking (http://dev.mysql.com/doc/refman/5.0/en/innodb-next-key-locking.html)

To prevent phantoms, InnoDB uses an algorithm called next-key locking that combines index-row locking with gap locking.

You can use next-key locking to implement a uniqueness check in your application: If you read your data in share mode and do not see a duplicate for a row you are going to insert, then you can safely insert your row and know that the next-key lock set on the successor of your row during the read prevents anyone meanwhile inserting a duplicate for your row. Thus, the next-key locking enables you to “lock” the nonexistence of something in your table.

我的理解是说,InnoDB提供了next-key locks,但需要应用程序自己去加锁。manual里提供一个例子:

SELECT * FROM child WHERE id > 100 FOR UPDATE;

这样,InnoDB会给id大于100的行(假如child表里有一行id为102),以及100-102,102+的gap都加上锁。

可以使用show innodb status来查看是否给表加上了锁。

 

下面看列子

 

例子1

a

b

SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ;

SET AUTOCOMMIT=0;

 

 

BEGIN

BEGIN

SELECT * FROM test WHERE a='1' FOR UPDATE;

 

 

SELECT * FROM test

 


 

 

INSERT test VALUES(1,1);

 

 

锁住了

INSERT test VALUES(1,1);

 

成功

 

COMMIT

 

 


 

 

COMMIT

 

避免幻读可以select锁住,再insert

 

 

 例子2

 

a

b

SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ;

SET AUTOCOMMIT=0;

 

 

BEGIN

BEGIN

SELECT * FROM test WHERE a='1' FOR UPDATE;

 

 

SELECT * FROM test

 


 

 

INSERT test VALUES(2,2);

 

 

连2也被锁住了?

INSERT test VALUES(1,1);

 

成功

 

COMMIT

 

 

 

 

这次提交成功

 

COMMIT

其他尝试,这种情况无论插入2还是5都被锁住等等

 

 例子3

 

a

b

SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ;

SET AUTOCOMMIT=0;

 

 

BEGIN

BEGIN

SELECT * FROM test

SELECT * FROM test


 


 

SELECT * FROM test WHERE a='1' FOR UPDATE;

 

 

SELECT * FROM test

 


 

 

INSERT test VALUES(2,2);

 

 

 

COMMIT

COMMIT

成功

 

COMMIT

 

 

COMMIT

 

 

 

 

 例子 4

 

 

a

b

SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ;

SET AUTOCOMMIT=0;

 

 

BEGIN

BEGIN

SELECT * FROM test

SELECT * FROM test


 


 

SELECT * FROM test WHERE a='2' FOR UPDATE;

 


 

 

 

SELECT * FROM test

 


 

 

INSERT test VALUES(2,2);

 

 

 

 

INSERT test VALUES(5,5);

 


 

COMMIT

COMMIT

 

例子 5

 

 

a

b

SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ;

SET AUTOCOMMIT=0;

BEGIN

BEGIN

SELECT * FROM test

SELECT * FROM test


 


 

SELECT * FROM test WHERE a='1' FOR UPDATE;

 

 

INSERT test VALUES(5,5);

 

 

插入5成功了

 

UPDATE test SET b=33 WHERE a='3'

 


 

 

INSERT test VALUES(2,2);

 

 

 

2也可以

 

UPDATE test SET b=11 WHERE a='1'

 

 

1锁住了

COMMIT

 

 


 

 

COMMIT

SELECT * FROM test

SELECT * FROM test


 


 

 

 

 

以上例子说明,forupdate时候,id为主键,RR策略时候,锁住了的条件符合的行,但是如果条件找不到任何列,锁住的是整个表,(主键,唯一索引,非唯一索引,(insert,update对于gab锁不通),参考第一章,第七章,第九章)

 

 

 ------------------------------------------------------------------

  再来看大神的解释 :链接: http://blog.bitfly.cn/post/mysql-innodb-phantom-read/

 

再看一个实验,要注意,表t_bitfly里的id为主键字段。实验三:

t Session A                 Session B
|
| START TRANSACTION;        START TRANSACTION;
|
| SELECT * FROM t_bitfly
| WHERE id<=1
| FOR UPDATE;
| +------+-------+
| | id   | value |
| +------+-------+
| |    1 | a     |
| +------+-------+
|                           INSERT INTO t_bitfly
|                           VALUES (2, 'b');
|                           Query OK, 1 row affected
|
| SELECT * FROM t_bitfly;
| +------+-------+
| | id   | value |
| +------+-------+
| |    1 | a     |
| +------+-------+
|                           INSERT INTO t_bitfly
|                           VALUES (0, '0');
|                           (waiting for lock ...
|                           then timeout)
|                           ERROR 1205 (HY000):
|                           Lock wait timeout exceeded;
|                           try restarting transaction
|
| SELECT * FROM t_bitfly;
| +------+-------+
| | id   | value |
| +------+-------+
| |    1 | a     |
| +------+-------+
|                           COMMIT;
|
| SELECT * FROM t_bitfly;
| +------+-------+
| | id   | value |
| +------+-------+
| |    1 | a     |
| +------+-------+
v

可以看到,用id<=1加的锁,只锁住了id<=1的范围,可以成功添加id为2的记录,添加id为0的记录时就会等待锁的释放。

MySQL manual里对可重复读里的锁的详细解释:

http://dev.mysql.com/doc/refman/5.0/en/set-transaction.html#isolevel_repeatable-read

For locking reads (SELECT with FOR UPDATE or LOCK IN SHARE MODE),UPDATE, and DELETE statements, locking depends on whether the statement uses a unique index with a unique search condition, or a range-type search condition. For a unique index with a unique search condition, InnoDB locks only the index record found, not the gap before it. For other search conditions, InnoDB locks the index range scanned, using gap locks or next-key (gap plus index-record) locks to block insertions by other sessions into the gaps covered by the range.

------

一致性读和提交读,先看实验,实验四:

t Session A                      Session B
|
| START TRANSACTION;             START TRANSACTION;
|
| SELECT * FROM t_bitfly;
| +----+-------+
| | id | value |
| +----+-------+
| |  1 | a     |
| +----+-------+
|                                INSERT INTO t_bitfly
|                                VALUES (2, 'b');
|                                COMMIT;
|
| SELECT * FROM t_bitfly;
| +----+-------+
| | id | value |
| +----+-------+
| |  1 | a     |
| +----+-------+
|
| SELECT * FROM t_bitfly LOCK IN SHARE MODE;
| +----+-------+
| | id | value |
| +----+-------+
| |  1 | a     |
| |  2 | b     |
| +----+-------+
|
| SELECT * FROM t_bitfly FOR UPDATE;
| +----+-------+
| | id | value |
| +----+-------+
| |  1 | a     |
| |  2 | b     |
| +----+-------+
|
| SELECT * FROM t_bitfly;
| +----+-------+
| | id | value |
| +----+-------+
| |  1 | a     |
| +----+-------+
v

 

如果使用普通的读,会得到一致性的结果,如果使用了加锁的读,就会读到“最新的”“提交”读的结果。

本身,可重复读和提交读是矛盾的。在同一个事务里,如果保证了可重复读,就会看不到其他事务的提交,违背了提交读;如果保证了提交读,就会导致前后两次读到的结果不一致,违背了可重复读。

可以这么讲,InnoDB提供了这样的机制,在默认的可重复读的隔离级别里,可以使用加锁读去查询最新的数据。

http://dev.mysql.com/doc/refman/5.0/en/innodb-consistent-read.html

If you want to see the “freshest” state of the database, you should use either the READ COMMITTED isolation level or a locking read:
SELECT * FROM t_bitfly LOCK IN SHARE MODE;

 

 

结论:MySQL InnoDB的可重复读并不保证避免幻读,需要应用使用加锁读来保证。而这个加锁度使用到的机制就是next-key locks。

 

结论:mysql 的重复读解决了幻读的现象,但是需要 加上 select for update/lock in share mode 变成当前读避免幻读,普通读select存在幻读

内容概要:本文设计了一种基于PLC的全自动洗衣机控制系统内容概要:本文设计了一种,采用三菱FX基于PLC的全自动洗衣机控制系统,采用3U-32MT型PLC作为三菱FX3U核心控制器,替代传统继-32MT电器控制方式,提升了型PLC作为系统的稳定性与自动化核心控制器,替代水平。系统具备传统继电器控制方式高/低水,实现洗衣机工作位选择、柔和过程的自动化控制/标准洗衣模式切换。系统具备高、暂停加衣、低水位选择、手动脱水及和柔和、标准两种蜂鸣提示等功能洗衣模式,支持,通过GX Works2软件编写梯形图程序,实现进洗衣过程中暂停添加水、洗涤、排水衣物,并增加了手动脱水功能和、脱水等工序蜂鸣器提示的自动循环控制功能,提升了使用的,并引入MCGS组便捷性与灵活性态软件实现人机交互界面监控。控制系统通过GX。硬件设计包括 Works2软件进行主电路、PLC接梯形图编程线与关键元,完成了启动、进水器件选型,软件、正反转洗涤部分完成I/O分配、排水、脱、逻辑流程规划水等工序的逻辑及各功能模块梯设计,并实现了大形图编程。循环与小循环的嵌; 适合人群:自动化套控制流程。此外、电气工程及相关,还利用MCGS组态软件构建专业本科学生,具备PL了人机交互C基础知识和梯界面,实现对洗衣机形图编程能力的运行状态的监控与操作。整体设计涵盖了初级工程技术人员。硬件选型、; 使用场景及目标:I/O分配、电路接线、程序逻辑设计及组①掌握PLC在态监控等多个方面家电自动化控制中的应用方法;②学习,体现了PLC在工业自动化控制中的高效全自动洗衣机控制系统的性与可靠性。;软硬件设计流程 适合人群:电气;③实践工程、自动化及相关MCGS组态软件与PLC的专业的本科生、初级通信与联调工程技术人员以及从事;④完成PLC控制系统开发毕业设计或工业的学习者;具备控制类项目开发参考一定PLC基础知识。; 阅和梯形图建议:建议结合三菱编程能力的人员GX Works2仿真更为适宜。; 使用场景及目标:①应用于环境与MCGS组态平台进行程序高校毕业设计或调试与运行验证课程项目,帮助学生掌握PLC控制系统的设计,重点关注I/O分配逻辑、梯形图与实现方法;②为工业自动化领域互机制及循环控制结构的设计中类似家电控制系统的开发提供参考方案;③思路,深入理解PL通过实际案例理解C在实际工程项目PLC在电机中的应用全过程。控制、时间循环、互保护、手动干预等方面的应用逻辑。; 阅建议:建议结合三菱GX Works2编程软件和MCGS组态软件同步实践,重点理解梯形图程序中各环节的时序逻辑与互机制,关注I/O分配与硬件接线的对应关系,并尝试在仿真环境中调试程序以加深对全自动洗衣机控制流程的理解
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值