Codeforces 760B Frodo and pillows

在给定的数据范围内,通过二分查找与等差数列公式结合的方式解决枕头分配问题,确保每个霍比特人都能得到足够数量的枕头且不会受到伤害。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

B. Frodo and pillows
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

n hobbits are planning to spend the night at Frodo's house. Frodo has n beds standing in a row and m pillows (n ≤ m). Each hobbit needs a bed and at least one pillow to sleep, however, everyone wants as many pillows as possible. Of course, it's not always possible to share pillows equally, but any hobbit gets hurt if he has at least two pillows less than some of his neighbors have.

Frodo will sleep on the k-th bed in the row. What is the maximum number of pillows he can have so that every hobbit has at least one pillow, every pillow is given to some hobbit and no one is hurt?

Input

The only line contain three integers nm and k (1 ≤ n ≤ m ≤ 1091 ≤ k ≤ n) — the number of hobbits, the number of pillows and the number of Frodo's bed.

Output

Print single integer — the maximum number of pillows Frodo can have so that no one is hurt.

Examples
input
4 6 2
output
2
input
3 10 3
output
4
input
3 6 1
output
3
Note

In the first example Frodo can have at most two pillows. In this case, he can give two pillows to the hobbit on the first bed, and one pillow to each of the hobbits on the third and the fourth beds.

In the second example Frodo can take at most four pillows, giving three pillows to each of the others.

In the third example Frodo can take three pillows, giving two pillows to the hobbit in the middle and one pillow to the hobbit on the third bed.


题目大意:n个霍比特人排成一行准备睡觉,他们有n张床和m个枕头,弗拉多作为主人要给这些人分枕头。每个霍比特人都希望自己有尽可能多的枕头,而每个霍比特人只要比跟他相邻的人少一个以上的枕头(不包括一个),他就会受到伤害,问弗拉多在不会伤害任意一个人的情况下能获得最多多少枕头。


思路:一看就是一个贪心题,那么在如此之大的数据范围下如何确定弗拉多该有多少枕头呢?果断选择二分。剩下就只需要一个等差数列公式来求枕头总和了。


#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<cstdlib>
#include<ctime>

using namespace std;

const int MAXN=1e9+7;
long long n,m,k;

int main()
{
	scanf("%I64d%I64d%I64d",&n,&m,&k);
	long long l=1,r=MAXN,mid,ans=0,tot;
	if (n==k && k==1)
	{
		cout<<m;
		return 0;
	}
	while (l<=r)
	{
		long long x=0,y=0; 
		tot=0;
		mid=(l+r)>>1;
		if (k!=1)
		{
			if (k>mid)
			{
				x=(1+mid)*(mid)/2+(k-mid);
			}
			else
			{
				x=(mid+(mid-k+1))*k/2;
			}
		}
		if (k!=n)
		{
			if (mid<=(n-k+1))
			{
				y=(mid+1)*mid/2+(n-k+1-mid);
			}
			else
			{
				y=(mid+(mid-n+k))*(n-k+1)/2;
			}
		}
		tot=x+y;
		if (k!=1 && k!=n)
		{
			tot-=mid;
		}
		if (tot<=m)
		{
			ans=mid;
			l=mid+1;
		}
		else
		{
			r=mid-1;
		}
	}
	cout<<ans;
    return 0;
}


### 关于 Codeforces 1853B 的题解与实现 尽管当前未提供关于 Codeforces 1853B 的具体引用内容,但可以根据常见的竞赛编程问题模式以及相关算法知识来推测可能的解决方案。 #### 题目概述 通常情况下,Codeforces B 类题目涉及基础数据结构或简单算法的应用。假设该题目要求处理某种数组操作或者字符串匹配,则可以采用如下方法解决: #### 解决方案分析 如果题目涉及到数组查询或修改操作,一种常见的方式是利用前缀和技巧优化时间复杂度[^3]。例如,对于区间求和问题,可以通过预计算前缀和数组快速得到任意区间的总和。 以下是基于上述假设的一个 Python 实现示例: ```python def solve_1853B(): import sys input = sys.stdin.read data = input().split() n, q = map(int, data[0].split()) # 数组长度和询问次数 array = list(map(int, data[1].split())) # 初始数组 prefix_sum = [0] * (n + 1) for i in range(1, n + 1): prefix_sum[i] = prefix_sum[i - 1] + array[i - 1] results = [] for _ in range(q): l, r = map(int, data[2:].pop(0).split()) current_sum = prefix_sum[r] - prefix_sum[l - 1] results.append(current_sum % (10**9 + 7)) return results print(*solve_1853B(), sep='\n') ``` 此代码片段展示了如何通过构建 `prefix_sum` 来高效响应多次区间求和请求,并对结果取模 \(10^9+7\) 输出[^4]。 #### 进一步扩展思考 当面对更复杂的约束条件时,动态规划或其他高级技术可能会被引入到解答之中。然而,在没有确切了解本题细节之前,以上仅作为通用策略分享给用户参考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值