Cow Bowling
Time Limit:
1000MS
Memory Limit: 65536K
Description
The cows don't use actual bowling balls when they go bowling. They each take a number (in the range 0..99), though, and line up in a standard bowling-pin-like triangle like this:
Given a triangle with N (1 <= N <= 350) rows, determine the highest possible sum achievable.
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5 Then the other cows traverse the triangle starting from its tip and moving "down" to one of the two diagonally adjacent cows until the "bottom" row is reached. The cow's score is the sum of the numbers of the cows visited along the way. The cow with the highest score wins that frame.
Given a triangle with N (1 <= N <= 350) rows, determine the highest possible sum achievable.
Input
Line 1: A single integer, N
Lines 2..N+1: Line i+1 contains i space-separated integers that represent row i of the triangle.
Lines 2..N+1: Line i+1 contains i space-separated integers that represent row i of the triangle.
Output
Line 1: The largest sum achievable using the traversal rules
Sample Input
5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5
Sample Output
30
Hint
Explanation of the sample:
7
*
3 8
*
8 1 0
*
2 7 4 4
*
4 5 2 6 5 The highest score is achievable by traversing the cows as shown above.
Source
记忆化搜索:
/*47ms,1356KB*/
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 355;
int a[maxn][maxn], dp[maxn][maxn], n;
int f(int i, int j)
{
if (dp[i][j] >= 0) return dp[i][j];
if (i == n - 1) return dp[i][j] = a[i][j];
return dp[i][j] = a[i][j] + max(f(i + 1, j), f(i + 1, j + 1));
}
int main()
{
int i, j;
scanf("%d", &n);
for (i = 0; i < n; ++i)
for (j = 0; j <= i; ++j)
scanf("%d", &a[i][j]);
memset(dp, -1, sizeof(dp));
printf("%d", f(0, 0));
return 0;
}
递推:
/*16ms,868KB*/
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn = 355;
int a[maxn][maxn];
int main()
{
int n, i, j;
scanf("%d", &n);
for (i = 0; i < n; ++i)
for (j = 0; j <= i; ++j)
scanf("%d", &a[i][j]);
for (i = n - 2; i >= 0; --i)
for (j = 0; j <= i; ++j)
a[i][j] += max(a[i + 1][j], a[i + 1][j + 1]);
printf("%d", a[0][0]);
return 0;
}

本文探讨了CowBowling问题的解决策略,通过记忆化搜索和递推方法求解最优路径,实现高分策略。包括算法实现细节、代码解析及性能优化。
4892

被折叠的 条评论
为什么被折叠?



