n
a1,a2,a3....an (1<=ai<=n,切有可能ai=aj)
问这个数列中是否存在k个数的数字之和可以被n整除
鸽笼原理的一个应用
考虑 a1, a1+a2,a1+a2+a3,....a1+a2+a3+a4,,+an 一共有n个正数
若这个n个正数都可以被n整除那么肯定是存在k的,
现在设这n个正数除n都有一个非0的余数,因为余数共有n-1种,有n个数,肯定有两个余数是相同的,
因此存在a1+a2..+ak = bn+r 和a1+a2+...+al =cn+r都余r
则 ak+1...+al = (c-b)n 说明了整除性一定存在。
//#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
typedef long long ll;
using namespace std;
const int maxn=1e5;
int mod[maxn];
int val[maxn];
int sum[maxn];
int main(){
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
int n;
while(scanf("%d",&n)!=EOF){
memset(sum,0,sizeof(sum));
memset(val,0,sizeof(val));
memset(mod,-1,sizeof(mod));
for(int i=1; i<=n; ++i){
scanf("%d",&val[i]);
sum[i] = ( sum[i-1] + val[i] )%n;
}
mod[0] = 0;
for(int i=1; i<=n;++i){
if(mod[sum[i]] == -1){
mod[sum[i]] = i;
}
else{
cout<<i-mod[sum[i]]<<endl;
for(int j=mod[sum[i]]+1; j<=i;++j)
cout<<val[j]<<endl;
break;
}
}
}
return 0;
}
题目好像要求在有多个结果得时候输出一个数量最少得
//#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
typedef long long ll;
using namespace std;
const int maxn=1e5;
int mod[maxn];
int val[maxn];
int sum[maxn];
int main(){
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
int n;
while(scanf("%d",&n)!=EOF){
memset(sum,0,sizeof(sum));
memset(val,0,sizeof(val));
memset(mod,-1,sizeof(mod));
for(int i=1; i<=n; ++i){
scanf("%d",&val[i]);
sum[i] = ( sum[i-1] + val[i] )%n;
}
mod[0] = 0;
for(int i=1; i<=n;++i){
if(mod[sum[i]] == -1){
mod[sum[i]] = i;
}
else{
cout<<i-mod[sum[i]]<<endl;
for(int j=mod[sum[i]]+1; j<=i;++j)
cout<<val[j]<<endl;
break;
}
}
}
return 0;
}
POJ3370
给你两个整数C和N,再给你N个正数的序列,从中找到若干数,使得其和刚好是 C的倍数。输出这些数的序号。
//POJ3370
//#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
typedef long long ll;
using namespace std;
const int maxn=1e5+10;
int mod[maxn];
int val[maxn];
int pos[maxn];
int main(){
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
int n,c;
while(scanf("%d%d",&c,&n)!=EOF){
if(c==0&&n==0) return 0;
memset(mod,0,sizeof(mod));
memset(pos,-1,sizeof(pos));
mod[0] = 0;
for(int i=1;i<=n;++i){
scanf("%d",&val[i]);
mod[i] = ( mod[i-1] +val[i] )%c;
}
pos[0] = 0;
int k,r;
for(int i=1;i <= n;++i){
if(pos[ mod[i] ] == -1)
pos[mod[i]] = i;
else{
k= pos[mod[i]] ;
r= i; //cout<<k<<' '<<r<<endl;
break;
}
}
// cout<<k<<' '<<r<<endl;
for(int i=k+1; i<r;++i)
cout<<i<<' ';
cout<<r<<endl;
}
return 0;
}