机器学习学习笔记(13)----岭回归(Ridge回归)

在《机器学习学习笔记(4)----线性回归的数学解析》,我们通过计算线性模型的损失函数的梯度,得到使得损失函数为最小值的\omega的解析解,被称之为普通最小二乘法:

\omega =(X^{T}X)^{-1}X^{T}y   (1)

公式(1)能够求得的前提是X^{T}X是满秩矩阵,这样才能计算得到它的逆矩阵。但是在很多情况下,矩阵不可逆。特别是当样本数m很大时,m >> n时,矩阵基本上是不可逆的,因为矩阵中出现大量线性相关的行向量的几率很高。这时,我们直接去算公式(1)是算不出来结果的。

为了解决这个问题,我们需要重新定义损失函数,在损失函数中引入范数项:

J(\omega)=\frac{1}{2m}((y-X\omega ) ^{T}(y-X\omega ) + \lambda \left \|\omega \right \|_{p}^{p} )  &

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值